Product Description
China Cheap Direct Drive Silent Fixed Speed Variable Speed Pm Diesel Portable Oil-free Industrial Rotary Compresor De Aire Screw Air Compressor for Sale
Product Description
Product Name | VSD Screw Air Compressor |
Part number | 11KW 15HP VSD Screw Air Compressor |
Application | 11kw 15HP screw compressor |
Brand | Airstone |
Material | Metal |
Delivery Time | 15 days |
Warranty | 1.5 years |
Business range:
Airend, Used air compressor, Oil free spare parts Shaft Seal/ Sleeve Temperature Sensor / Pressure Sensor Solenoid Valve/ Thermostat Valve/ Air intake Valve / Minimum Pressure Valve/ Blow Off Valve Wheel Gear / Oil Level Indicator/ Master Controller Preventive Maintenance Kits / Air Filter / Oil Filter / Oil separator / Filter element / Compressor Oil and so on.
No matter what you want, just send me your part no. , favorable price will be quoted Immediately.
Hot Sale Products
Company Profile
Hongkong CHINAMFG Industry Limited was established in 2000, located in Chang’an town,HangZhou city– “China National Machinery and Hardware town”,We’re a Hi-Tech company specialize in research, development, manufacture and distribution of air compressor sparts. With our rich experience, profession technology and rigorous quality control, our products are widely used in air compressor field with good feedback and continuous orders from more than 2,000 customers in domestic and oversea market.We can solve any technical problems you may encounter with your air compressor and provide many kinds of air compressor parts for you.
Neutral packing & original Packing & our packing are available
FAQ
Q1. What is your terms of air compressor payment?
A: 100%T/T in advance, L/C, Paypal before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q2. What is your terms of th air compressor?
A: EXW, FOB, CFR, CIF, DDU are available.
Q3. How about your delivery time for this air compressor?
A: Generally, it will take 30 working days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.
Q4. What is your sample policy?
A: We can supply the air compressor sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q5: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit;
2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.
<img src="https://img.hzpt.com/img/air-compressor/air-compressor-L1.webp" alt="China high quality China Cheap Direct Drive Silent Fixed Speed Variable Speed Pm Diesel Portable Oil-Free Industrial Rotary Compresor De Aire Screw Air Compressor for Sale manufacturer “><img src="https://img.hzpt.com/img/air-compressor/air-compressor-L2.webp" alt="China high quality China Cheap Direct Drive Silent Fixed Speed Variable Speed Pm Diesel Portable Oil-Free Industrial Rotary Compresor De Aire Screw Air Compressor for Sale manufacturer “>
editor by lmc 2024-09-09
China high quality Diesel Engine Driven Screw Air Compressor supplier
Product Description
Product Description
This series of screw air compressors adopts a new 2 -stage compression engine. Compared with the traditional single -stage compression model, the efficiency is increased by more than 15%. The exhaust capacity can achieve cross -power segment coverage. It uses electric -driven, and has more environmentally friendly energy -saving advantages.
Item | Portable air compressor-Option A | |
1 | Model | LUY050-7 |
2 | volume flow m3/min | 5.18 (185CFM) |
3 | Working pressure bar | 7 |
4 | Acoustic sound level | 70+3 |
Fuel tank L | 67 | |
5 | Diesel engine | Kubota |
6 | Model | V 1505 T |
7 | Engine kw | 33 |
8 | Dimension Length mm | 1848 |
9 | Dimension Width mm | 1040 |
10 | Dimension Heigth mm | 1154 |
11 | Weight kg | 650 |
Features
- High -energy -saving type: This series uses a new dual -level high -efficiency host to achieve higher exhaust volume with the same power motor to achieve truly efficient energy saving.
- Comprehensive monitoring: The customized version module realizes the comprehensive monitoring of the equipment, and understands the operating status of the aircraft in real time.
- Customized: The electrical system can customize the soft startup version to achieve smooth startup equipment to avoid the impact on the power grid. For more exhaust volume and exhaust pressure, it can be customized according to working conditions.
Detailed Photos
Other related products
Diameter in mm | NO. Air Holes | Gauge PDC Buttons | Front PDC Buttons | Approx. weight | Shank style |
85 | 2 | 6*φ13 | 4*φ12 | 5.0 kgs | COP34/COP32/DHD3.5 /BR3/Mach303 |
90 | 2 | 6*φ14 | 4*φ12 | 5.8 kgs | |
95 | 2 | 6*φ14 | 5*φ12 | 5.9 kgs | |
100 | 2 | 6*φ14 | 6*φ12 | 6.1 kgs | |
105 | 2 | 8*φ13 | 6*φ12 | 6.3 kgs | |
105 | 2 | 6*φ14 | 5*φ13 | 8.6 kgs | COP44/DHD340/Mach44 /M40/SD4/XL4/QL40 |
110 | 2 | 7*φ14 | 6*φ13 | 8.8 kgs | |
115 | 2 | 7*φ14 | 7*φ13 | 9.0 kgs | |
120 | 2 | 8*φ14 | 7*φ13 | 9.5 kgs | |
127 | 2 | 8*φ14 | 7*φ14 | 9.9 kgs | |
133 | 2 | 7*φ16 | 7*φ14 | 15.0 kgs | COP54/DHD350/Mach50 /M50/SD5/QL50 |
140 | 2 | 7*φ19 | 7*φ14 | 16.5 kgs | |
146 | 2 | 8*φ19 | 7*φ14 | 17.0 kgs | |
152 | 2 | 8*φ19 | 8*φ14 | 17.8 kgs | |
165 | 2 | 8*φ19 | 8*φ16 | 18.5 kgs | |
152 | 2 | 8*φ19 | 8*φ16 | 23.3kgs | COP64/COP62/DHD360 /M60/SD6/XL6/QL60/TD150 |
165 | 2 | 8*φ19 | 8*φ16 | 25.2 kgs | |
171 | 2 | 8*φ19 | 10*φ16 | 25.8 kgs | |
190 | 2 | 10*φ19 | 12*φ16 | 28.5 kgs | |
203 | 2 | 10*φ19 | 14*φ16 | 29.5 kgs | |
203 | 2 | 10*φ19 | 14*φ16 | 48.1 kgs | DHD380/COP84/SD8 /QL80/TK18 |
216 | 2 | 10*φ19 | 14*φ16 | 52.0 kgs | |
241 | 2 | 12*φ19 | 18*φ16 | 58.7kgs | |
254 | 2 | 12*φ19 | 21*φ16 | 60.4 kgs | |
292 | 2 | 12*φ19 | 21*φ16 | 80.1 kgs |
Company Profile
HangZhou FIRIP Mining&Machinery Co., Ltd is specializing a manufacture of drill tools for 23 years in China. It mainly studies and manufactures the low&high pressure down-the-hole impactors, various down-the-hole drills, drill pipes and drilling tools. The products are widely used in earthwork, mining, water well engineering and construction. Geothermal drilling, etc.
Domestic brands in China are mainly Xihu (West Lake) Dis.g. We have about 5, 000 square kilometers of standard plant, complete equipment, advanced technology, reliable and stable quality which has won the praise of most of the domestic and foreign markets. In recent years, with the continues growth of the company’s sales, target market gradually exported to all over the world, Nowadays, our products are exported to more than 20 countries and regions in Russia, Central Asia, Southeast Asia, the Middle East, Africa and South America. We always continuously improved the industry standards for rock drilling and drilling tools. We are committed to establish a stable cooperative relationship with customers and suppliers from all over the world, mutual benefit and common development.
Packaging & Shipping
Our Advantages
1. Our products can match over 95% against the original products.
2. High quality raw material, with premium hardened procedures for long life.
3. Full production chain to secure stable and prompt production leadtime.
4. Experienced senior technicians and long year experienced workers and engineers.
5. Customized acceptable and quick and efficient service.
6. Price are competitive against the famous brands and best quality against the small factory.
7. Owing to high quality, professional serivce and competitive price, we have gotton good reputation from our customer all over the world, such as France, Spain, Italy, South Africa, Australia, Iran, Malaysia, etc.
FAQ
1. Where is your company located?
We are located in HangZhou City, ZheJiang Province, about 200 kilometers away from HangZhou International Port.
2. Why choose Firip drill bits?
1) We have more than 20 years of experience in researching, developing, manufacturing and supplying high quality rock drilling tools to all over the world.
2) We have super high quality and cheap price.
3) Excellent service.
3.Which port do you ship from?
We usually ship containers from HangZhou Port. Or customers can specify any port in mainland China
4.What is your minimum order quantity?
Our MOQ is 1 piece or 1 set, the price may depend on the order quantity.
5.How about the delivery time?
It usually takes about 15 days.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Video Technical Support, Online Support, Spare PAR |
---|---|
Warranty: | 1 Year |
Lubrication Style: | Lubricated |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.
editor by CX 2024-05-17
China Best Sales in Stock Nt855 Diesel Engine Parts Air Compressor 3018534 for CHINAMFG Engine manufacturer
Product Description
Product Description
in Stock NT855 Diesel Engine Parts Air Compressor 3018534
Engine Type | K19/K38/K50/QSK19/QSK38/QSM11/NT855 |
Parts No. | 3018534 |
Part Name | Air Compressor |
Packing | Neutral Package or As Customized Requirement |
Delivery Time | 3-7 Days |
Condition | 100% New |
MOQ | 1 Piece |
Warranty | 6 Months |
Shipment | By Express(DHL/Fedex/UPS),By sea,By air |
Payment | T/T , D/P , Money Gram , L/C , Western Union |
Related Products
Main Engine Model | ||||
KTA19 | KTAA19 | KTTA19 | QSk19 | QSKTAA19 |
NT855 | NTA855 | NTAA855 | KT38 | KTA38 |
KT50 | KTA50 | KTTA50 | M11 | MTA11 |
MTAA11 | 4BT | 6BT | 6CT | ISF |
Products Include | ||
Injector | Cylinder Head | Crankshaft |
Camshafts | Valve Train Parts | Connecting Rod |
Cylinder Liners | Piston | Piston Ring |
Bearings and Bush | Fuel Pump | Oil Pump |
Water Pump | Air Compressors | Turbocharger |
Flywheels | Gasket | Bolts |
Starter | Alternator | Vibration Dampers |
Packaging & Shipping
Company Profile
ZheJiang Jielot trading Co., Ltd. was established in March 2019, located in Xihu (West Lake) Dis., ZheJiang , China, close to ZheJiang CHINAMFG Engine Factory-CCEC.
We can supply CUMMINS engines and generator sets for mining, Marine and land use. Various series of parts can also be provided.main product series:CCEC ,DCEC XCEC : QSB5.9, QSB6.7, KTA19, KTA38, KTA50, NTA855, M11, QSM11, ISM11, QSX15, QSL9, 6BT5.9, 6CT8.3 ,4BT , Fleetguard filter ,HOLSET turbocharger,Air compressor and so on.
We have a strategic cooperative relationship with the largest CHINAMFG distributor in China, and we have a coexisting relationship with the largest OEM factory. We can provide genuine Cummins parts or high-quality parts,Aftermarket quality parts, giving you a dual choice, so that you can choose more suitable for your price and quality.
We have cooperated with Thailand, Singapore, Malaysia, Indonesia, Dubai, Russia, Morocco, Germany and many other countries, and our products have been unanimously recognized. we have a complete set of procedures, in the quotation, procurement, delivery, transportation of mature solutions, to solve your worries.
Certifications
Exhibition & Customer
Our Advantages
1. We have more than 3 years of experience in CHINAMFG diesel engine parts.
2. We cooperate with many certificated OEM factories of CHINAMFG who have advanced equipment and technology.
3. High Quality + Reasonable Price + Quick Response + Technical Support is what we are trying to offer you the best cooperation experience.
FAQ
Q1:What is your terms of payment?
A1:T/T 30% as deposit,and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q2:How about your delivery time?
A2:Generally, it will take 7 days for air order and 20 to 30 days for sea order after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.
Q3:Do you have MOQ?
A3:For general parts,we don’t have MOQ,1 piece can be sold,but for some parts like bearing,piston we may have MOQ like 6pcs,12pcs,but we will inform if there is any MOQ for special parts.
Q4:How to contact you?
A4:You can send inquiry to us directly or you can contact us by email phone call,WhatsApp,WeChat,Facebook and Skype. We will try to reply you as soon as possible.
Q5:How long is the production cycle (lead time) ?
A5:For engine parts, we usually have enough stock; For engines, usually around 10-20 days; For stock engine, usually 1 week.
Q6:How do you make our business long-term and keep good relationship?
A6:1. We keep good quality and competitive price to ensure our customers benefit.
2. We respect every customer as our friend and we sincerely do business and make friends with them,no matter.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO9001, CE |
---|---|
Standard Component: | Standard Component |
Technics: | Press |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.
editor by CX 2024-05-07
China wholesaler Industrial Machine Diesel Engine Part 3018534 Compressor Air for CHINAMFG air compressor price
Product Description
Product Description
Industrial Machine Diesel Engine Part 3018534 Compressor Air For Cummins
Product Name | Compressor Air |
Part Number | 3018534 |
Packing | Original Packing |
Application | Construction machinery diesel engine part |
After-Service | Strict test before shipment/fast delivery |
Our Service
ZheJiang CHINAMFG Science and Technology Co., Ltd. (Hongjun) is the chinese leading one-stop supplier of spare parts for heavy machinery, marine and heavy trucks! Based on its extensive network , CHINAMFG is able to provide the most satisfying one-stop service for its customers!
CHINAMFG supply spare parts for
1.Wheelloader,excavator,grader,roller,bulldozer
2.Truck crance
3.Mining truck
4.Concrete pump
We can supply spare parts for all bellowing Cumming models:
B Series:
B3.3(Tier 4 Interim) B3.3(Tier 2) B3.3(Tier 3) B3.9CS4
B3.9 B4.5(Stage V) B5.9(Tier 2) B5.9CS4
B6.2 B6.7(Stage V) B6.7CS4 B7
B Series (Tier 2) 4B3.3
C Series:
C8.3(Tier 2)
D Series:
D4.5 D6.7
F Series:
F2.5 F3.8(Stage V)
I Series:
ISM11
K Series:
K19
L Series:
L8.9 L9 (Stage V) L9 Plus L9.3
L9CS4
M Series:
M11 M12 M14CS4 M15
M15 Plus
N Series:
N14 Plus NT
Q Series:
QSX11.9 (Tier 4 Interim) QSX15 (Tier 4 Final/Sate IV) QSX15 (Tier 4 Interim)
QSG12 (Tier 4 Final/Stage IV) QSLP (Tier 4 Final/Stage IV) QSLP (Tier 4 Interim)
QSB3.3 (Tier 4 Interim) QSB3.3 (Tier 3) QSB6.7 (Tier 4 Final/Stage IV)
QSB4.5 (Tier 4 Final/Stage IV) QSB6.7 (Tier 4 Interim) QSB4.5 (Tier 4 Interim)
QSB4.5 ( Tier 3) QSB4.5 QSB5.9
QSB6.7 (Tier 3) QSB6.7 QSB7
QSF3.8 (Tier 4 Final/State IV) QSF2.8 (Tier 4 Final/Stage IV) QSK19 (Tier 3)
QSK (Tier 3) QSL (Tier 3) QSL (Tier 2)
QSL9 (Tier 4 Interim) QSL9.3 QSL9 (Tier 4 Final/Stage IV) QSC
QSC8.3 QSC (Tier 3) QST30 (Tier 2) QSK23 (Tier 2)
QSK19 (Tier 2) QSK(Tier 2) QSM (Tier 2)
QSM (Tier 3) QSM11 QSNT
QSK19 QSX (Tier 2)
X Series:
X12 (2571) X12 (2571) X12 (Stage V) X15 (Stage V)
P Series:
Power Units-Stage V
Hot Selling Products
Our Company
Warehouse
Packing&Shipping
Certificate
Our Team
Customer Visiting
FAQ
Q: How about the warranty?
A: All goods have 1 year warranty.
Q: What about the delivery time?
A: Normally in 1 week.
Q: Other suppliers have a better price than yours?
A: To create the greatest benefit for clients is our belief, if you have a better price, please let we know.
We will try our best to meet your price and support your business.
Q: What about the shipment?
A: We can arrange shipment by DHL, FedEx, UPS, TNT, EMS with competitive price. Of course,
customers can also use their own freight forwarders.
Q: How about the terms of payment?
A: Generally through T/T, Paypal and Western Union also accept.
F
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Support |
---|---|
Warranty: | 1 Year |
Type: | Compressor Air |
Application: | Excavator |
Certification: | CE, ISO9001: 2000 |
Condition: | New |
Customization: |
Available
|
|
---|
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.
editor by CX 2024-04-25
China Custom Water Cooling Twin-Screw CHINAMFG China Drilling Machine Diesel Screw Air Compressor Factory air compressor for car
Product Description
REDUCE ENERGY CONSUMPTION
Under different conditions,the demand for gas will float.Through a large number of research and calculation of marketdemandCha nun confirmed it.Only about 10% of applications require stable air supplyTherefore,frequency conversioncompressor can play a greater role in energy saving.
Energy cost often accounts for 70% of the life cycle cost of a compressor. The production of compressed air may account for 40% of all electricity costs in the plant.In almost every factory,the gas consumption will vary with different time periods,with its high and low CHINAMFG periods. permanent magnet variable frequency screw air compressor can supply glass completely according to the requirements of gas consumption,which can not only save a lot of energy, but also protect theenvironment for future generations.
INTERIOR STRUCTURE
CUSTOM OIL
COOLED MOTOR
First-stage energy-efficient motor,Low Noise,IP65 protection grade
AUTOMOTIVE GRADE
PERMANENT MAGNET MOTOR
IE4 high efficiency permanent magnet motor.
AUTOMOTIVE PERMANENT MAGNET MOTOR ForN38UH high grade permanent magnet, IP67 protection grade, and fully enclosed structure uniquevacuum epoxy dipping paint,effectively guaranteeing the stable operation of unit.
CHANUN
CUSTOM CONVERTER
Permanent magnet variable-frequency conversion technology, wide voltage. energy-saving ,with a small impact on the power grid.
7 INCH TOUCH SCREEN
Large touch screen.all-round protection monitoring with functions of motor start/stopcontrol, operation control:reversal protection of air compressor: and multi-point temperature detection and control protection.
HIGH MOBILITY (OPTIONAL)
Easy and flexible to rotate. so that the air compressor is able to move conveniently andquickly (optional)
ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,a comprehensive first-class exhibition hall and a testing laboratory.
CHINAMFG has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.
The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts.
Dukas adheres to the business philosophy of cooperation and mutual benefit to provide a one-stop service for every customer!
CHINAMFG air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South Africa, Australia, Thailand, Russia, Argentina, Canada and so on.
CHINAMFG products have won a good reputation from users for their excellent quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with excellent products and meticulous after-sales service!
Dukas warmly welcome customers to visit our factory and establish a wide range of cooperation!
Frequency Asked Question:
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our Factory is Located in Xihu (West Lake) Dis. County, HangZhou City, ZheJiang Province, China.
Q3: Will you provide spare parts of your products?
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.
Q4: Can you accept OEM orders?
A4: Yes, with professional design team, OEM orders are highly welcome.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: Warranty terms of your machine?
A6: Two years warranty for the machine and technical support always according to your needs.
Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 24 Hours |
---|---|
Warranty: | 2 Year |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Power Source: | AC Power |
Cylinder Position: | Horizontal |
Customization: |
Available
|
|
---|
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.
editor by CX 2024-04-23
China manufacturer 12 Bar Diesel Portable Screw Air Compressor Capacity 10m3/Min 353 Cfm air compressor for car
Product Description
Product
The air compressor is equipped with a separate 2-stage air filtration system to protect all components from the harsh conditions on the construction site.
Features
National III diesel engine emission standards.
Reliable and durable.
Superior performance.
Atlas Copco’s patented screw rotor design ensures low energy consumption and high performance.Suitable for harsh working conditions
High-performance chassis design.
Enhance your engine performance.
Using low quality oil may damage your engine. Our heavy-duty fuel filters protect your engine, enhance its performance and extend its life.
Extend the service life of your air compressor .
Protect your compressor with a double air filter.
The air compressor is equipped with a separate 2-stage air filtration system to protect all components from the harsh conditions on the construction site.
Product specifications series parameters
Item | Atlas portable air compressor | |||
1 | Model | XATS156C | XAHS166C | XAS186C |
2 | Volume flow m3/min | 10 | 10 | 11.5 |
3 | Working pressure bar | 10.3 | 12 | 7 |
4 | Air compressor oil volume L | 23 | 25 | 25 |
5 | Tank volume L | 42 | ||
6 | Diesel tank volume L | 175 | ||
7 | Noisy grade db(A) | 80+3 | ||
8 | Diesel engine | Cummins | ||
9 | Model | QSB3.9-C130 | ||
10 | Air cylinder QTY | 4 | ||
11 | Engine kw | 95 | ||
12 | Full engine speed rpm | 2300 | ||
13 | Engine unloading speed rpm | 1700 | ||
14 | Overall Length (Trailer type) mm | 4120 | ||
15 | Overall Width mm | 1900 | ||
16 | Overall Height mm | 2000 | ||
17 | Overall Weight kg | 1680 | ||
18 | Exhaust valves QTYxsize | 1×1 1/2”, 1×3/4” | ||
FAQ
Q1: What’s your delivery time?
A: 15 days to produce, within 3 days if in stock.
Q2: What’s methods of payments are accepted?
A: We agree T/T ,L/C , West Union ,Money Gram ,Paypal.
Q3: What about the shipments and package?
A: 40′ container for 2 sets, 20′ container for 1 set,
Machine in nude packing, spare parts in standard export wooden box.
Q4: Have you got any certificate?
A:We have got ISO,CE certificate.
Q5: How to control the quality?
A: We will control the quality by ISO and CE requests.
Q6: Do you have after-sale service and warranty service ?
A: Yes, we have.We can supply instruction for operation and maintenance.If necessary, we can send our engineer to repair the machine in your company.
Warranty is 1 year for the machine.
Q7: Can I trust your company ?
A: Our company has been certificated by Chinese government,and verified by SGS Inspection Company
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online |
---|---|
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.
editor by CX 2024-04-23
China best Diesel Drive Portable Screw Air Compressor lowes air compressor
Product Description
Diesel Engine Portable Mobile Towable Rotary Screw Type Air Compressor Advantages
Use Germany KAPP machine and German manufacturing technique to process the compression element, the components manufactured to the highest standards and precision aligned roller-bearings ensure long service life with maximum reliability.
Heavy-duty CHINAMFG diesel engine for extended operation.
Excellent components, for example, Germany MANN oil filter and CHINAMFG electronics for high performance.
Automatic operation system helps the operator to master the operating skills quickly, unattended operation and remote control are available.
Conform to CE, ISO9001 and energy saving certification, etc.
Applications: mining, hydropower, oil and gas exploitation, borehole, shipyard, construction, chemical industry, quarry, sandblasting, pipeline pressure test, public works, etc.
The Technical Parameter Of Diesel Engine Portable Rotary Screw Air Compressor
Model | Free Air Delivery | Normal Working Pressure | Weight | Dimensions (without towbar) |
Diesel Engine Manu-facturer | Diesel Engine Model | ||||
m3/min | CFM | bar(e) | psig | kg | L(mm) | W(mm) | H(mm) | |||
DACY-3.2 | 3.2 | 115 | 8 | 116 | 1000 | 2100 | 1500 | 1360 | yangdong | YSD490G |
DACY-5.3/7 | 5.3 | 190 | 7 | 102 | 1600 | 2300 | 1790 | 1580 | Cummins | 4BT3.9-C80 |
DACY-5/10 | 5.0 | 177 | 10 | 145 | 1600 | 2300 | 1790 | 1580 | 4BT3.9-C80 | |
DACY-6/7 | 6.0 | 212 | 7 | 102 | 1600 | 2300 | 1790 | 1580 | 4BT3.9-C80 | |
DACY-7.5/7 | 7.5 | 265 | 7 | 102 | 1600 | 2300 | 1790 | 1580 | 4BT3.9-C80 | |
DACY-8.5/10 | 8.5 | 300 | 10 | 145 | 1800 | 2600 | 1910 | 2015 | 4BTA3.9-C125 | |
DACY-9/7 | 9.0 | 318 | 7 | 102 | 1800 | 2440 | 1910 | 1920 | 4BT3.9-C100 | |
DACY-10/8 | 10.0 | 353 | 8 | 116 | 1800 | 2440 | 1910 | 1920 | 4BT3.9-C100 | |
DACY-10/13 | 10.0 | 353 | 13 | 189 | 2050 | 3270 | 1910 | 2080 | 6BT5.9-C150 | |
DACY-11/10 | 11 | 388 | 10 | 145 | 2050 | 3270 | 1910 | 2080 | 6BT5.9-C150 | |
DACY-11/13 | 11 | 388 | 13 | 189 | 3600 | 3575 | 1700 | 2320 | 6BTA5.9-C180 | |
DACY-12/7 | 12 | 424 | 7 | 102 | 2050 | 3270 | 1910 | 1950 | 6BT5.9-C150 | |
DACY-12/10 | 12 | 424 | 10 | 145 | 2050 | 3270 | 1910 | 1950 | 6BT5.9-C150 | |
DACY-12/13 | 12 | 424 | 13 | 189 | 2050 | 3400 | 1700 | 2320 | 6BTA5.9-C180 | |
DACY-13/8 | 13 | 460 | 8 | 116 | 2050 | 3270 | 1910 | 2080 | 6BT5.9-C150 | |
DACY-13/13 | 13 | 460 | 13 | 189 | 3600 | 3400 | 1700 | 2320 | 6BTA5.9-C180 | |
DACY-15.5/10 | 15.5 | 547 | 10 | 145 | 3600 | 3400 | 1700 | 2320 | 6BTA5.9-C180 | |
DACY-15/13 | 15 | 530 | 13 | 189 | 3600 | 3400 | 1700 | 2320 | 6BTA5.9-C180 | |
DACY-15/16 | 15 | 530 | 16 | 232 | 4000 | 3390 | 1700 | 2640 | 6CTA8.3-C215 | |
DACY-15/18 | 15 | 530 | 18 | 261 | 3500 | 3555 | 1750 | 2660 | 6CTA8.3-C260 | |
DACY-17/7 | 17 | 600 | 7 | 102 | 3600 | 3400 | 1700 | 2320 | 6BTA5.9-C180 | |
DACY-17/8 | 17 | 600 | 8 | 116 | 3600 | 3400 | 1700 | 2320 | 6BTA5.9-C180 | |
DACY-17/13 | 17 | 600 | 13 | 189 | 4000 | 3390 | 1700 | 2640 | 6CTA8.3-C215 | |
DACY-17/14.5 | 17 | 600 | 14.5 | 210 | 3500 | 3555 | 1750 | 2660 | 6CTA8.3-C260 | |
DACY-17/16 | 17 | 600 | 16 | 232 | 3500 | 3555 | 1750 | 2660 | 6CTA8.3-C260 | |
DACY-18/18 | 18 | 636 | 18 | 261 | 3300 | 4225 | 1980 | 2690 | 6LTAA8.9-C325 | |
DACY-19/14.5 | 19 | 671 | 14.5 | 210 | 3300 | 4225 | 1980 | 2690 | 6LTAA8.9-C325 | |
DACY-19/16 | 19 | 671 | 16 | 232 | 3300 | 4225 | 1980 | 2690 | 6LTAA8.9-C325 | |
DACY-20/16 | 20 | 706 | 16 | 232 | 3300 | 4225 | 1980 | 2690 | 6CTA8.3-C215 | |
DACY-21/8 | 21 | 742 | 8 | 116 | 4000 | 3390 | 1700 | 2640 | 6CTA8.3-C215 | |
DACY-22/20 | 22 | 777 | 20 | 290 | 6500 | 4700 | 2300 | 2750 | 6LTAA9.5-C360-II | |
DACY-22.5/14 | 22.5 | 795 | 14 | 203 | 3300 | 4225 | 1980 | 2690 | 6LTAA8.9-C325 | |
DACY-25.5/20 | 22.5 | 900 | 20 | 290 | 5500 | 4750 | 2100 | 2860 | EQR400-K2 | |
DACY-27/10 | 27 | 953 | 10 | 145 | 3300 | 4225 | 1980 | 2690 | 6LTAA8.9-C325 | |
DACY-32/10 | 32 | 1130 | 10 | 145 | 6500 | 4700 | 2300 | 2750 | 6LTAA9.5-C360-II | |
DACY-33/35 | 33 | 1165 | 35 | 508 | 7200 | 5000 | 2200 | 3000 | KTA19-P680 | |
DACY-34/25 | 34 | 1200 | 25 | 363 | 6000 | 4510 | 2160 | 3150 | KTA19-C600 | |
DACY-39/25 | 39 | 1377 | 25 | 363 | 7200 | 5000 | 2200 | 2200 | KTA19-P680 | |
DACY-45/10 | 45 | 1590 | 10 | 145 | 6200 | 5000 | 2200 | 3150 | QSZ13-C550 |
*) Specifications are subject to change without prior notice
DENAIR Factory
DENAIR Hannover Messe 2017
We carefully selected for you the classic case
DENAIR Diesel Portable Air Compressor in Thailand
Project Name: Tunnel construction in Chiengmai, Thailand
Product Name: 10m3/min 13bar & 17m3/min 13bar diesel portable screw air compressor
Model No. & Qty: DACY-10/13 x 1, DACY-17/13 x 2
Working Time: From November, 2015 till now
Event: From November 18 to 24th, 2015, DENAIR service team Allen, Gao zhingmeng and CHINAMFG visited our VIP customer in Chiengmai, Thailand for Installation guide, commissioning & technical training for diesel portable air compressors. The 3 units of air compressor are used for supporting the drilling rigs. DENAIR professional service team and reliable products impressed on the customers at the working site.
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang 201502, China
And our factory is located in No. 386, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Lubricated or Oil-Less |
---|---|
Cooling System: | Air Cooling/Water Cooling |
Power Source: | Diesel Engine |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.
editor by CX 2024-04-22
China high quality Glcy1150 Screw Air Compressor with Four Wheels Diesel Power for Water Well Drill Rig with Hot selling
Product Description
Screw Air compressor
Diesel portable air compressor:
1.Low operating sound and less vibration design.Easy serviceability.
2.Low fuel consumption to realize far distance outdoor usage;Full protection system,energy saving.
3.Good adaptability: The Air Compressor automatically control the air delivery of diesel engine by matching the demand of air consumption, which equals to frequency conversion control in motor power screw air compressor.
Advanges of Air Compressor:
1.Air filteration system: High efficient air inlet filter to prevent motor and airend rotors damaged by dirt particles
2.High efficient airend: Large rotors design and large bearings are used to ensure low RPM.This ensured low operating sound minimal vibration and extended operating life
3.Modulation Control: Based on air demang,the modulation valve will control the inlet air capacity and diesel enginer RPM to minimize the fuel consumption . Its features maximum energy saving.
4.Control panel: easy to control; high water temperature alarm , high pressure alarm ,high discharge air temperature alarm and high RPM alarm are all part of it’s features.
5.Diesel Engine: Using well known diesel engine like Yuchai, this ensure superior performance and reliablity of the compressor.
6.Cooler: Larger cooler and fan design to ensure maximum cooling especially for the extreme operating environment.
Model |
GLCY1150 |
Air delivery ( m3/min) |
31 |
Working pressure ( Mpa) |
2.5 |
Weight(kg) |
6500 |
Size(mm) |
4500*2050*2030mm |
Model |
XRVS1050 |
XRHS1150 |
XRXS1210 |
XRYS1150 |
XRVS1350 |
XRXS1275 |
Air pressure (bar) |
25 |
20 |
25/30 |
25/35 |
25 |
25/30 |
Displacement(m3/min) |
29.8 |
31.7 |
35.1/34.1 |
34.0/32.0 |
37.7 |
37.2/35.4 |
Lubricating oil volume(L) |
75 |
82 |
||||
Fuel tank volume(L) |
796 |
975 |
||||
Diesel engine |
||||||
Model |
C13 ACERT GIII |
C15 ACERT GIII |
C18 ACERT GIII |
|||
Rated Power(kw) |
328 |
403 |
429 |
|||
Max speed(rpm) |
1800 |
1700/1650 |
1750/1650 |
1800 |
||
Unloading speed(rpm) |
1200 |
1300 |
1300 |
|||
Dimension(mm) |
5640X2100X2500 |
5400x2250x2510 |
||||
Weight(kg) |
5057 |
7450 |
7670 |
Company Profile:
Glorytek Industry (ZheJiang ) Co., Ltd. is an integrated corporation specialized in manufacturing and exporting top quality drilling equipment and drilling parts for more than 20 years. We are supported and assisted by highly experienced R&D team and enginners that enable us to complete all the assigned projects successfully as per clients’ requirements.
Our factory covers an area of 250,000 square meters, construction area is about 150,000 square meters, having machining machinery, CNC processing center, friction welding machine, testing equipments etc. over 200 sets and more than 600 employees.
Our products have been exported more than 60 countries, including Australia, Russia, Soutn Africa, Zimbabwe, Malaysia, Indonesia, South Korea, France, Sweden, USA, Canada, Haiti etc.
After-Sale Service:
* Training how to instal the machine, training how to use the machine.
* Engineers available to service machinery overseas.
FAQ
Q: Are you a factory or a trading company?
A: We are an integrated corporation specialized in manufacturing and exporting.
Q: What is your payment terms?
A: We can accept T/T,L/C.
Q:.What is your MOQ? How long is the delivery time?
A: Our MOQ is 1 sets. Normally for drill rig, the delivery time is about 25-30 days after receiving payment, the drilling tools would be about 15 days.
Q:. How long is the warranty?
A: The guarantee period for mainframe is 1 year (excluding the quick wear parts).
Q: Can we print my Logo on the products?
A: Yes, we can. We support OEM .
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Video Support |
---|---|
Warranty: | Video Support |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Power Source: | Diesel Engine |
Cylinder Position: | Horizontal |
Customization: |
Available
|
|
---|
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.
editor by CX 2024-04-17
China Standard Engineering Air Compressor Diesel China Brand Portable Air Compressor Machine supplier
Product Description
Engineering Air Compressor Diesel China Brand Portable Air Compressor Machine
Acntruck International is a leading Chinese construction machinery exporter, located in the downtown of ZheJiang City.
Since our company was founded, we continually introduce top Chinese construction machinery enterprises and their products to international markets. We not only make more international customers know and approbate our products, but also gradually build up friendship with construction machinery customers all over the world.
With a balanced and diversified approach towards the ever changing market scenario in perfect combination with strategic management and organic growth, CHINAMFG International has emerged as a renowned exporter of a wide range of top Chinese Construction Machinery.
↓↓↓ Details Parameter ↓↓↓
Portable, Stationary Screw Air Compressor
♦ Powerful engines and heavy structure design to meet the requirements of the extreme environment of the mines
♦ High-quality components and optimized system design for reliable operation and energy savingHigh-quality components and optimized system design for reliable operation and energy saving
♦Large space and user-friendly design for more convenient mainteniance
↓↓↓ Pictures about Product ↓↓↓
↓↓↓ Pictures about Package ↓↓↓
↓↓↓ Learn More about us ↓↓↓
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type |
---|---|
Performance: | Low Noise, Variable Frequency, Explosion-Proof |
Mute: | Mute |
Lubrication Style: | Lubricated |
Drive Mode: | Pneumatic |
Configuration: | Portable |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.
editor by CX 2024-04-15
China high quality Diesel Driven Portable Mobile Screw Air Compressor for Mining air compressor for car
Product Description
*Product Description
MODEL | SUPC50-8 | SUPC75-10 | SUPC75-10 | SUPC160-10 | SUPC160-13-II | SUPC190-13 | SUPC190-15 | |
Machine | ||||||||
Free air delivery | m³/min | 4.5 | 6 | 5 | 12 | 15 | 15 | 13 |
cfm | 160 | 215 | 178 | 428 | 535 | 535 | 465 | |
Normal working pressure | bar | 8 | 8 | 10 | 10 | 13 | 13 | 15 |
psi | 118 | 118 | 147 | 147 | 191 | 191 | 220 | |
Dimentions (withou twobar) (mm) |
Length | 2500 | 2500 | 2500 | 3200 | 3200 | 3500 | 3500 |
Width | 1750 | 1750 | 1750 | 1600 | 1600 | 1750 | 1750 | |
Height | 2100 | 2100 | 2100 | 2000 | 2000 | 2200 | 2200 | |
Weight | Kg | 1150 | 1150 | 1150 | 2200 | 2350 | 2500 | 2500 |
Wheel qty | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
Size and No. of outlet value | G1″*2 | G1″*2 | G1″*2 | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
|
Diesel | ||||||||
Brand | XICHAI | XICHAI | XICHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | |
Model | 4DW91-50GBG3U | 4DW93-75GG3U | 4DW93-75GG3U | YC4A160-H300 | YC4A160-H300 | YC6J190-H300 | YC6J190-H300 | |
Rated power | Kw | 36.8 | 55 | 55 | 118 | 118 | 140 | 140 |
hp | 50 | 75 | 75 | 160 | 160 | 190 | 190 | |
No. of cylinders | 4 | 4 | 4 | 4 | 4 | 6 | 6 | |
Engine speed | rpm | 2650 | 2400 | 2400 | 2200 | 2200 | 2200 | 2200 |
Oil capacity | L | 5 | 7 | 7 | 11 | 11 | 15 | 15 |
coolant capacity | L | 30 | 30 | 30 | 60 | 60 | 75 | 75 |
Battary | V | 12 | 24 | 24 | 24 | 24 | 24 | 24 |
Fuel tank capacity | L | 100 | 100 | 100 | 180 | 180 | 180 | 180 |
MODEL | SUPC190-17 | SUPC190-15-II | SUPC220-15 | SUPC220-13-II | SUPC220-16-II | SUPC220-17-II | SUPC260-15-II | |
Machine | ||||||||
Free air delivery | m³/min | 10 | 15 | 15 | 17 | 15 | 13 | 22 |
cfm | 357 | 535 | 535 | 608 | 535 | 465 | 786 | |
Normal working pressure | bar | 17 | 15 | 15 | 13 | 16 | 17 | 15 |
psi | 250 | 220 | 220 | 191 | 235 | 250 | 220 | |
Dimentions (withou twobar) (mm) |
Length | 3500 | 3500 | 3500 | 3500 | 3500 | 3500 | 3700 |
Width | 1750 | 1750 | 1750 | 1750 | 1750 | 1750 | 1900 | |
Height | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 | 2350 | |
Weight | Kg | 2500 | 2650 | 3100 | 3200 | 3200 | 3200 | 3500 |
Wheel qty | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
Size and No. of outlet value | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
|
Diesel | ||||||||
Brand | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCAI | |
Model | YC6J190-H300 | YC6J190-H300 | YC6J220-T300 | YC6J220-T300 | YC6J220-T300 | YC6J220-T300 | YC6A260-H300 | |
Rated power | Kw | 140 | 140 | 162 | 162 | 162 | 162 | 191 |
hp | 190 | 190 | 220 | 220 | 220 | 220 | 260 | |
No. of cylinders | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Engine speed | rpm | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 |
Oil capacity | L | 15 | 15 | 20 | 20 | 20 | 20 | 24 |
coolant capacity | L | 75 | 75 | 90 | 90 | 90 | 90 | 110 |
Battary | V | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Fuel tank capacity | L | 180 | 180 | 220 | 220 | 220 | 220 | 220 |
MODEL | SUPC260-17-II | SUPC260-22-II | SUPC300-13-II | SUPC300-17-II | SUPC300-25-II | SUPC420-25-II | SUPC430-24-II | SUPC500-25-II | |
Machine | |||||||||
Free air delivery | m³/min | 17 | 14 | 28 | 22 | 17 | 25 | 29 | 33 |
cfm | 608 | 500 | 1000 | 786 | 608 | 893 | 1035 | 1180 | |
Normal working pressure | bar | 17 | 22 | 13 | 17 | 25 | 25 | 24 | 25 |
psi | 250 | 324 | 191 | 250 | 368 | 368 | 353 | 396 | |
Dimentions (withou twobar) (mm) |
Length | 3700 | 3700 | 3900 | 3900 | 3900 | 3600 | 3600 | 3600 |
Width | 1900 | 1900 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | |
Height | 2350 | 2350 | 2400 | 2400 | 2400 | 2500 | 2500 | 2500 | |
Weight | Kg | 3500 | 3600 | 4000 | 4100 | 4200 | 4500 | 4600 | 4700 |
Wheel qty | 4 | 4 | 4 | 4 | 4 | ||||
Size and No. of outlet value | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G2″*1 |
G1″*1 G2″*1 |
G1″*1 G2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
|
Diesel | |||||||||
Brand | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | |
YC6A260-H300 | YC6A260-H300 | YC6K560-KT31 | |||||||
Rated power | Kw | 191 | 191 | 221 | 221 | 221 | 309 | 320 | 375 |
hp | 260 | 260 | 300 | 300 | 300 | 420 | 430 | 500 | |
No. of cylinders | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Engine speed | rpm | 2200 | 2200 | 2000 | 2000 | 2000 | 1900 | 1900 | 1900 |
Oil capacity | L | 24 | 24 | 28 | 28 | 28 | 32 | 32 | 32 |
coolant capacity | L | 110 | 110 | 140 | 140 | 140 | 180 | 180 | 180 |
Battary | V | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Fuel tank capacity | L | 220 | 220 | 280 | 280 | 280 | 400 | 400 | 400 |
*Certifications
*Company Information
ZheJiang Compressor Import & Export Co.,Ltd is located in the logistics capital of China, 1 of the important birthplaces of Chinese civilization-HangZhou, ZheJiang Province. With professinal manufacturing experience and first -class comprehensive scientific and technological strength of the talent team, as the energy-saving compressor system leader and renowed in the industry.
We specializes in R & D and sales of power frequency ,permanent magnet frequency conversion ,two -stage compressor permanent magnet frequency conversion ,low -voltage and mobile screw air compressor . With a deep industry background , 1 step ahead ambition . With the professional enthusiasm for screw air compressor , team innovation , to meat the challenges of enterprise’s own determination and the rigorous attitude of excellence,products are strictly in accordance with IOS 9001 international quality procedures,to provide customers with energy -saving and reliable products .
We warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation . Choosing HangZhou Atlas Air compressor Manufacturing Co.,Led.is to choose quality and service ,choose culture and taste ,choose a permanent and trustworthy partner !
*Packaging & Shipping
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Lubricated |
---|---|
Cooling System: | Air Cooling |
Power Source: | AC Power |
Cylinder Position: | Angular |
Structure Type: | Closed Type |
Installation Type: | Movable Type |
Customization: |
Available
|
|
---|
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.
editor by CX 2024-04-10