Tag Archives: compressor highly

China Custom Highly CHINAMFG R134A Rotary Compressor Bsa357CV-R1an for Air Condition arb air compressor

Product Description

Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition

Technical Specification

Model

 

Displacement

Cooling capacity

(W)

Cooling capacity (Btu/h)

 

COP

 

Capacitor (uf/v)

 

Height

BSA272CV

2.72

280

955

2.20

4

143

BSA357CV

3.57

365

1245

2.15

4.7

143

BSA418CV

4.18

440

1501

2.10

6.5

143

BSA460CV

4.60

490

1672

2.28

6.5

169

BSA586CV

5.86

640

2184

2.40

8

169

BSA645CV

6.45

692

2361

2.35

6.5

169

SD074CV

7.40

1210

4129

2.90

13

205

SD086CV

8.60

1410

4811

2.94

15

205

SD091CV

9.10

1490

5084

2.94

13

205

SD104CV

10.40

1740

5937

3.03

15

232.9

SD122CV

12.20

2040

6960

2.96

17

232.9

SD145CV

14.50

2480

8462

3.04

20

232.9

SD156CV

15.60

2650

9042

3.05

25

232.9

Technical Specification for other Series

inverter compressor       Refrigerant Gas R22       DC POWER    
Model cm3/rev BTU/H WATTS Input Power frequency range CURRENT BTU/W/H W/W dB(A) Oil capacity weight
303DHV-47B2(Y) 47 36490 10700 3370 30~90Hz 18.5 10.9 3.2 60 1.5L 36Kg
303DHV-47D2(Y) 47 36490 10700 3350 30~90Hz 8.6 10.9 3.2 60 1.5L 36Kg
403DHV-64D2(Y) 64 48420 14200 4300 30~90Hz 11.5 11.2 3.3 60 1.8L 36Kg
401DHV-64D2(Y) 64 61380 18000 5600 20~150Hz 10.5 10.9 3.2 66 1.8L 36Kg
503DHV-80D2(Y) 80 61040 17900 5300 30~90Hz 15 11.6 3.4 60 1.8L 37Kg
                       
inverter compressor       Refrigerant Gas R407       DC POWER    
Model cm3/rev BTU/H WATTS Input Power frequency range CURRENT BTU/W/H W/W dB(A) Oil capacity weight
G303DHV-47B2(Y) 47 37510 11000 3470 30~90Hz 19.1 10.9 3.2 60 1.5L 36Kg
G303DHV-47D2(Y) 47 37510 11000 3450 30~90Hz 8.9 10.9 3.2 60 1.5L 36Kg
G403DHV-64D2(Y) 64 49790 14600 4430 30~90Hz 11.8 11.2 3.3 60 1.8L 36Kg
G401DHV-64D2(Y) 64 63220 18540 5770 20~150Hz 10.8 10.9 3.2 66 1.8L 36Kg
G503DHV-80D2(Y) 80 62740 18400 5460 30~90Hz 15.5 11.6 3.4 60    

Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition

Refrigerator Compressor

Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition 

 

Refrigeration Compressors Scope
We are specialized in refrigeration compressors, including rotary, scroll, piston, screw, hermetic, and semi-hermetic all kinds of brands refrigeration compressors. 

1.Rotary compressor:Toshiba,Panasonic, CHINAMFG LG
2.Scroll compressor:Copeland,Dan-foss performer,hitachi,Sanyo
3.Piston hermetic compressor:Tecumseh CHINAMFG MT,NTZ,MTZ series.

4.Semi-hermetic Reciprocating Compressor:Copeland,Bit-zer,Carrier
5.Screw compressor :Bit-zer ,Hitachi

Brand Range
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition

Workshop

Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition
FAQ
1. What is the price of a refrigeration compressor?
The price is decided by Quantity.
 
2. How about samples?
Sample Lead Time: 5 working days
Sample Fee:
1). It’s free for all for a regular customer
2). For new customers, we will charge first, it is fully refundable when the order is confirmed.
 
3. How many days for shipping?
Shipping Methods and Lead Time:
By Express: 3-5 working days to your door (DHL, UPS, TNT, FedEx…)
By Air: 5-8 working days to your airport
By Sea: Pls advise your port of destination, the exact days will be confirmed by our forwarders,  and the following lead time is for your reference. Europe and America (25 – 35 days), Asia (3-7 days), Australia ( 16-23 days)
 
4. What are the Terms of Payment?
Credit Card, T/T, L/C, Western Union;  30% T/T in advance, 70% before delivery.

5. Packaging & Shipping?
Pallet, wooden case or with outer carton, or as customers’ specific requirements.

6. Why choose your company?
We are focusing on all aspects of refrigeration compressor, high quality, and nice prices.
We strictly implement the rules according to the quality standard in every aspect from the purchase of raw material to the production process and outgoing of products.
Great service and Superior quality is provided all the time…
Packaging & Shipping Packing: Carton, wooden box, and pallet, or as customers’ requirements.
Shipping: By Express (DHL /UPS /TNT /FedEx /EMS), By Air, By Sea

Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition

Packaging and shipping

HVAC&R Exhibition
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 6 Months
Installation Type: Stationary Type
Lubrication Style: Lubricated
Cylinder Position: Vertical
HP: 1HP
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China Custom Highly CHINAMFG R134A Rotary Compressor Bsa357CV-R1an for Air Condition   arb air compressorChina Custom Highly CHINAMFG R134A Rotary Compressor Bsa357CV-R1an for Air Condition   arb air compressor
editor by CX 2024-04-27

China supplier 220/240V 50Hz Rotary Screw Air Compressor Price SD156CV Highly Air Conditioner Compressor small air compressor

Product Description

Series Typical model Displ. Cooling Capaciry COP Capacitor Compressor Hight Test Mode
cc W Btu/h w/w uF/V mm
TH TH420RC 42.0  7250 24737 3.30  339.7  ASHRAE/T
TH428RC 42.8  7340 25044 3.25  339.7  ASHRAE/T
TH446RC 44.6  7500 25590 3.25  347.7  ASHRAE/T
THK40P***U 47.2  7850 26784 3.12  361.3  ASHRAE/T
THU40W***U 48.8  8197 27978 3.18  361.3  ASHRAE/T
TE TE680RC 68.0  12830 43776 3.35  410.5  ASHRAE/T
TE708RC 70.8  13250 45209 3.35  410.5  ASHRAE/T
TE800RC 80.0  15050 51351 3.30  441.1  ASHRAE/T

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Standard
Warranty: 1 Year
Usage: for Air Conditioner
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China supplier 220/240V 50Hz Rotary Screw Air Compressor Price SD156CV Highly Air Conditioner Compressor   small air compressor China supplier 220/240V 50Hz Rotary Screw Air Compressor Price SD156CV Highly Air Conditioner Compressor   small air compressor
editor by CX 2024-02-02