Tag Archives: methane compressor china

China high quality Air-Cooled 250bar CH4 Methane Piston Natural Gas Booster Compressor for CNG Station air compressor portable

Product Description

Company Profile

 

The company’s main products include desulfurization, dehydrocarbons, separation, compression, filling, storage and transportation equipment for natural gas extraction in oil and gas fields; complete sets of wellhead gas recovery equipment; complete sets of vented natural gas recovery equipment; complete sets of coalbed methane, shale gas and biogas development and utilization equipment Equipment; CNG filling station complete equipment; LNG complete equipment; BOG compressor; large-displacement screw-piston compound compressor; membrane nitrogen and adsorption nitrogen production complete equipment; in addition, hydrogen, oxygen, nitrogen, argon, carbon monoxide gas, carbon dioxide gas, coal gas, hydrogen sulfide gas, propylene gas, ethylene gas, methyl chloride gas, trifluoropropane gas, liquefied petroleum gas and other special gases, low-temperature gases and air compressors. Among them, the W and V series non-lubricated compressors produced by introducing advanced foreign technology have reached the international advanced level.

 

Product Description

The company currently has 10 series of leading products and hundreds of specifications. Its volumetric flow rate: 0.05~200m3/min. Pressure range: low pressure type 0~1.6MPa, medium pressure
Type 1.6~8.0MPa, high pressure type 8.0~50.0MPa. Lubrication methods are divided into 3 types: oil, oil-free and completely oil-free. The structural types include Z, W, V, D, M and H types. There are 3 cooling methods: air cooling, water cooling, and mixed cooling. In addition to providing users with customized products, we can also carry out personalized design and manufacturing according to user needs.
CNG STHangZhouRD STATION COMPRESSOR
CNG standard stations are built where natural gas pipelines pass through.
Gas is taken directly from the natural gas pipeline. Natural gas undergoes desulfurization, pressure regulation, metering, and
Filtration, dehydration and other processes enter the compressor unit, and then compress, cool and purify
Then the pressure is increased to 25Mpa, and finally the high-pressure trailer is supplied to the high-pressure trailer through the air filling column.
Fill up the gas, and also fill up the car through the gas vending machine. Our company can provide overall
Solutions and turnkey projects.
Equipment composition: air inlet filter pressure regulating metering device, desulfurization tower, low-pressure dehydration device, piston compressor, sequence control panel, gas storage bottle group, adding
Gas machines, gas filling columns, CNG trailers, gas alarm devices and other equipment.
Covered area: about 2000~4000m²
Optimal transportation radius: 150km
Suitable scale: ≥40000Nm²/d
Equipment installation time: about 30 days.
 

NO. TYPE Intake pressure
MPa
CAPACITY
Nm3/h
MOTOR
KW
COOLING  WEIGHT(TONS) SIZE
mm
1 W-5.6/0.5-250 0.05 500 160 WATER COOLING 9 5000×2300×2200
2 W-3.6/1-250 0.1 435 110 WATER/MIX COOLING 6 2400×2220×2150
3 W-4.75/1-250 0.1 570 132 WATER/MIX COOLING 6 2400×2220×2150
4 W-7.5/1-250 0.1 900 270 WATER/MIX COOLING 17 8500×2260×2200
5 W-4.5/1.4-250 0.14 650 160 WATER/MIX COOLING 7 3820×2270×2150
6 W-4.7/2-250 0.2 850 185 WATER/MIX COOLING 7 3820×2270×2150
7 WF-3.6/(1.5~2.5)-250  0.15~0.25 0.15~0.25 540~750 160 AIR COOLING 14 6200×2190×2080
8 W-3.6/(1.5~3)-250 0.15~0.3 540~860 185 WATER/MIX COOLING 7 4000×2270×2150
9 V-3.2/(3-5)-250 0.3~0.5 760-1150 220 AIR COOLING 14 6300×2525×2500
10 VF-3.2/(3~5)-250 0.3~0.5 770~1150 220 WATER/MIX COOLING 14 6300×2500×2500
11 W-1.5/8-250 0.8 810 132 WATER/MIX COOLING 8 4000×2300×2000
12 VF-2/(10~16)-250 1.0~1.6 1320~2000 280 AIR COOLING 10 5600×2500×2300
13 D-5/(2~4)-250 0.2~0.4 900~1500 315 WATER/AIR/MIX COOLING 23 5000×3500×2500
14 D-4.2/(3~6)-250 0.3~0.6 1000-1760 280 WATER/AIR/MIX COOLING 23 5000×3500×2500
15 D-3.6/(4~7)-250 0.4~0.7 1050~1730 315 WATER/AIR/MIX COOLING 23 5000×3500×2500
16 D-2.6/(7~12)-250 0.7~1.2 1250~2000 280 WATER/AIR/MIX COOLING 20 5000×3500×2500
17 VF-0.76/(7~13)-250 0.7~1.3 365~640 100 WATER/AIR/MIX COOLING 8 6000×2200×2230

CNG MOTHER STATION COMPRESSOR
The CNG mother station is built in a place where natural gas pipelines pass through.
Take the gas directly from the gas pipeline. Natural gas undergoes desulfurization, pressure regulation, metering, filtration,
Dehydration and other processes enter the compressor unit, and then are compressed, cooled and purified to make it
The pressure is increased to 25Mpa, and finally the high-pressure trailer is filled with air through the air filling column.
Sometimes, cars can also be refueled through gas vending machines. Our company provides turnkey projects.
Equipment composition: air inlet filter pressure regulating metering device, desulfurization tower, low pressure desulfurization tower
Water device, piston compressor, sequence control panel, gas storage bottle group, gas filling
machine, gas filling column, CNG trailer, gas alarm device and other equipment.
Covered area: about 2000~4000m²
Optimal transportation radius: 150km
Suitable scale: ≥40000Nm²/d
Equipment installation time: about 30 days.

NO. TYPE Intake pressure
MPa
CAPACITY
Nm3/h
MOTOR
KW
COOLING  WEIGHT(TONS) SIZE
mm
1   D-5/(2-4)-250 0.2~0.4 900~1500 315 WATER/AIR/MIX COOLING 23 5000×3500×2500
2   VF-3.2/(3~5)-250 0.3~0.5 770~1150 220 AIR COOLING 14 6300×2500×2500
3   D-4.2/(3-6)-250 03~0.6 1000-1760 280 WATER/AIR/MIX COOLING 23 5000×3500×2500
4   D-3.6/(4~7)-250 0.4~0.7 1050~1730 315 WATER/AIR/MIX COOLING 23 5000×3500×2500
5   D-2.6/(7~12)-250 0.7~1.2 1250~2000 280 WATER/MIX COOLING 20 5000×3500×2500
6   VF-0.76/(7~13)-250 0.7~0.3 365~640 100 MIX COOLING 8 6000×2200×2230
7   D-2.8/(8-12)-250 0.8~1.2 1350-2150 280 WATER/AIR/MIX COOLING 23 5000×3500×2500
8   V-2/(9-14)-250 0.9~1.4 1200-1800 280 WATER/AIR/MIX COOLING 12 6500×2525×2300
9   VFD-2/14-210 1.4 1800 280 AIR COOLING 15 10000×4000×3000
10   D-2.5/(12-14)-250 1.2~1.4 1950-2250 18 WATER/AIR/MIX COOLING 23 5000×3500×2500
11   VF-2/(10~16)-250 1.0~1.6 1320~2000 280 AIR COOLING 10 5600×2500×2300
12   D-2.8/(10~16)-250 1.0~1.6 1800-2850 355 WATER/AIR/MIX COOLING 23 5000×3500×2500
13   V-1.43/(16~20)-250 1.6~2.0 1460~1800 220 WATER/AIR/MIX COOLING 11 6000×2500×2250
14   D-2.4/(16-20)-250 1.6~2.0 2450-3000 355 WATER/AIR/MIX COOLING 23 5000×3500×2500
15   D-2.4/(16-23)-210 1.6~2.3 2450-3450 355 WATER/AIR/MIX COOLING 23 5000×3500×2500
16   V-1.8/(18-23)-210 1.8~2.3 2000-2590 280 WATER/AIR/MIX COOLING 12 6500×2525×2200
17   D-1.45/(20-35)-250 2.0~3.5 1830-3100 280 WATER/AIR/MIX COOLING 23 5000×3500×2500
18   V-0.8/(19~35)-250 1.9~3.5 960~1720 160 WATER/AIR/MIX COOLING 13 6500×2525×2200
19   VF-1/(25~40)-250 2.5~4.0 1560~2700 220 AIR COOLING 13.5 4250×2525×2100
20   D-1.45/(40~60)-250 4.0~6.0 3600~5300 315 WATER/AIR/MIX COOLING 23 5000×3500×2100
21   D-1.3/(50-70)-250 5.0~7.0 3970~5530 315 WATER/AIR/MIX COOLING 23 5000×3500×2100
22   D-1.3/(60-70)-250 6.0~7.0 4758~5530 315 WATER/AIR/MIX COOLING 23 5000×3500×2100
23   D-1.2/(40-80)-250 4.0~8.0 4758~5530 315 WATER/AIR/MIX COOLING 23 5000×3500×2100
24   D-3.5/(7-10)-250 0.7~1 1680~2240 550 AIR COOLING 28 6600×4300×2500

CNG SUBSTATION COMPRESSOR
CNG substations are built in places where no natural gas pipelines pass through.
The CNG trailer transfers the gas from the mother station to the station and unloads the gas through the gas unloading column.
Gas machines refill cars.
Equipment composition: gas unloading column, sub-station compressor, sequence control panel, storage
Gas cylinder sets, gas dispensers, gas alarm devices, CNG trailers and other equipment.
Covered area: about 1000~1500m²
Way of working:
After natural balance, the direct intake air is compressed and supercharged, and the average working capacity is
More than 1000 square meters
Compressor exhaust volume changes range as trailer pressure drops:
1800-400Nm²/h

NO. TYPE Intake pressure
MPa
CAPACITY
Nm3/h
MOTOR
KW
COOLING  WEIGHT(TONS) SIZE
mm
1 VF-0.32/(30~200)-250 3~20 1500 75 AIR 5.5 5538×2134×1680
2 VFD-0.32/(30~200)-250 3~20 1500 75 AIR 9.65 5538×2438×2438
3 DFD-0.32/(30-200)-250 3~20 1500 75 AIR 8.5 4400×2610×2591
4 VFD-0.32/(20~200)-250 2~20 1500 75 AIR 9.65 5538×2438×2438
5 VF-0.26/(30-200)-250 3~20 1000 55 AIR 5.5 5538×2350×2000
6 VFD-0.26/(30-200)-250 3~20 1000 55 AIR 9.5 5538×2350×2438
7 ZFD-0.1/(30~200)-250 3~20 650 37 AIR 8.5 7000×2700×2700
8 ZFD-0.24/(30-200)-250 3~20 1400 37×2 AIR 8.5 7000×2700×2700
9 KR-1500/(20-200)-250 2~20 1500 30×2 AIR 10 5500×2500×2950
10 KR-2000/(20-200)-250 2~20 2000 37×2 AIR 10 5500×2500×2950
11 DFD-3[0.28]/(2-4)[25-200]-250 0.2~0.4

2.5~20

540-900
(STANARD STATION AND SUBSTATION)
1300
160

75

AIR 12.5 4050×3450×2100

Detailed Photos

 

After Sales Service

In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
 

Training plan

Technical training is divided into 2 parts: company training and on-site training.
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
 

Packaging & Shipping

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Month
Warranty: 12 Month
Lubrication Style: Lubricated

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China high quality Air-Cooled 250bar CH4 Methane Piston Natural Gas Booster Compressor for CNG Station   air compressor portableChina high quality Air-Cooled 250bar CH4 Methane Piston Natural Gas Booster Compressor for CNG Station   air compressor portable
editor by CX 2024-05-16

China Professional Air-Cooled 25MPa CH4 Methane Piston Natural Gas Booster Compressor for CNG Standard Station air compressor CHINAMFG freight

Product Description

Company Profile

 

The company’s main products include desulfurization, dehydrocarbons, separation, compression, filling, storage and transportation equipment for natural gas extraction in oil and gas fields; complete sets of wellhead gas recovery equipment; complete sets of vented natural gas recovery equipment; complete sets of coalbed methane, shale gas and biogas development and utilization equipment Equipment; CNG filling station complete equipment; LNG complete equipment; BOG compressor; large-displacement screw-piston compound compressor; membrane nitrogen and adsorption nitrogen production complete equipment; in addition, hydrogen, oxygen, nitrogen, argon, carbon monoxide gas, carbon dioxide gas, coal gas, hydrogen sulfide gas, propylene gas, ethylene gas, methyl chloride gas, trifluoropropane gas, liquefied petroleum gas and other special gases, low-temperature gases and air compressors. Among them, the W and V series non-lubricated compressors produced by introducing advanced foreign technology have reached the international advanced level.

 

Product Description

The company currently has 10 series of leading products and hundreds of specifications. Its volumetric flow rate: 0.05~200m3/min. Pressure range: low pressure type 0~1.6MPa, medium pressure
Type 1.6~8.0MPa, high pressure type 8.0~50.0MPa. Lubrication methods are divided into 3 types: oil, oil-free and completely oil-free. The structural types include Z, W, V, D, M and H types. There are 3 cooling methods: air cooling, water cooling, and mixed cooling. In addition to providing users with customized products, we can also carry out personalized design and manufacturing according to user needs.
CNG STHangZhouRD STATION COMPRESSOR
CNG standard stations are built where natural gas pipelines pass through.
Gas is taken directly from the natural gas pipeline. Natural gas undergoes desulfurization, pressure regulation, metering, and
Filtration, dehydration and other processes enter the compressor unit, and then compress, cool and purify
Then the pressure is increased to 25Mpa, and finally the high-pressure trailer is supplied to the high-pressure trailer through the air filling column.
Fill up the gas, and also fill up the car through the gas vending machine. Our company can provide overall
Solutions and turnkey projects.
Equipment composition: air inlet filter pressure regulating metering device, desulfurization tower, low-pressure dehydration device, piston compressor, sequence control panel, gas storage bottle group, adding
Gas machines, gas filling columns, CNG trailers, gas alarm devices and other equipment.
Covered area: about 2000~4000m²
Optimal transportation radius: 150km
Suitable scale: ≥40000Nm²/d
Equipment installation time: about 30 days.
 

NO. TYPE Intake pressure
MPa
CAPACITY
Nm3/h
MOTOR
KW
COOLING  WEIGHT(TONS) SIZE
mm
1 W-5.6/0.5-250 0.05 500 160 WATER COOLING 9 5000×2300×2200
2 W-3.6/1-250 0.1 435 110 WATER/MIX COOLING 6 2400×2220×2150
3 W-4.75/1-250 0.1 570 132 WATER/MIX COOLING 6 2400×2220×2150
4 W-7.5/1-250 0.1 900 270 WATER/MIX COOLING 17 8500×2260×2200
5 W-4.5/1.4-250 0.14 650 160 WATER/MIX COOLING 7 3820×2270×2150
6 W-4.7/2-250 0.2 850 185 WATER/MIX COOLING 7 3820×2270×2150
7 WF-3.6/(1.5~2.5)-250  0.15~0.25 0.15~0.25 540~750 160 AIR COOLING 14 6200×2190×2080
8 W-3.6/(1.5~3)-250 0.15~0.3 540~860 185 WATER/MIX COOLING 7 4000×2270×2150
9 V-3.2/(3-5)-250 0.3~0.5 760-1150 220 AIR COOLING 14 6300×2525×2500
10 VF-3.2/(3~5)-250 0.3~0.5 770~1150 220 WATER/MIX COOLING 14 6300×2500×2500
11 W-1.5/8-250 0.8 810 132 WATER/MIX COOLING 8 4000×2300×2000
12 VF-2/(10~16)-250 1.0~1.6 1320~2000 280 AIR COOLING 10 5600×2500×2300
13 D-5/(2~4)-250 0.2~0.4 900~1500 315 WATER/AIR/MIX COOLING 23 5000×3500×2500
14 D-4.2/(3~6)-250 0.3~0.6 1000-1760 280 WATER/AIR/MIX COOLING 23 5000×3500×2500
15 D-3.6/(4~7)-250 0.4~0.7 1050~1730 315 WATER/AIR/MIX COOLING 23 5000×3500×2500
16 D-2.6/(7~12)-250 0.7~1.2 1250~2000 280 WATER/AIR/MIX COOLING 20 5000×3500×2500
17 VF-0.76/(7~13)-250 0.7~1.3 365~640 100 WATER/AIR/MIX COOLING 8 6000×2200×2230

CNG MOTHER STATION COMPRESSOR
The CNG mother station is built in a place where natural gas pipelines pass through.
Take the gas directly from the gas pipeline. Natural gas undergoes desulfurization, pressure regulation, metering, filtration,
Dehydration and other processes enter the compressor unit, and then are compressed, cooled and purified to make it
The pressure is increased to 25Mpa, and finally the high-pressure trailer is filled with air through the air filling column.
Sometimes, cars can also be refueled through gas vending machines. Our company provides turnkey projects.
Equipment composition: air inlet filter pressure regulating metering device, desulfurization tower, low pressure desulfurization tower
Water device, piston compressor, sequence control panel, gas storage bottle group, gas filling
machine, gas filling column, CNG trailer, gas alarm device and other equipment.
Covered area: about 2000~4000m²
Optimal transportation radius: 150km
Suitable scale: ≥40000Nm²/d
Equipment installation time: about 30 days.

NO. TYPE Intake pressure
MPa
CAPACITY
Nm3/h
MOTOR
KW
COOLING  WEIGHT(TONS) SIZE
mm
1   D-5/(2-4)-250 0.2~0.4 900~1500 315 WATER/AIR/MIX COOLING 23 5000×3500×2500
2   VF-3.2/(3~5)-250 0.3~0.5 770~1150 220 AIR COOLING 14 6300×2500×2500
3   D-4.2/(3-6)-250 03~0.6 1000-1760 280 WATER/AIR/MIX COOLING 23 5000×3500×2500
4   D-3.6/(4~7)-250 0.4~0.7 1050~1730 315 WATER/AIR/MIX COOLING 23 5000×3500×2500
5   D-2.6/(7~12)-250 0.7~1.2 1250~2000 280 WATER/MIX COOLING 20 5000×3500×2500
6   VF-0.76/(7~13)-250 0.7~0.3 365~640 100 MIX COOLING 8 6000×2200×2230
7   D-2.8/(8-12)-250 0.8~1.2 1350-2150 280 WATER/AIR/MIX COOLING 23 5000×3500×2500
8   V-2/(9-14)-250 0.9~1.4 1200-1800 280 WATER/AIR/MIX COOLING 12 6500×2525×2300
9   VFD-2/14-210 1.4 1800 280 AIR COOLING 15 10000×4000×3000
10   D-2.5/(12-14)-250 1.2~1.4 1950-2250 18 WATER/AIR/MIX COOLING 23 5000×3500×2500
11   VF-2/(10~16)-250 1.0~1.6 1320~2000 280 AIR COOLING 10 5600×2500×2300
12   D-2.8/(10~16)-250 1.0~1.6 1800-2850 355 WATER/AIR/MIX COOLING 23 5000×3500×2500
13   V-1.43/(16~20)-250 1.6~2.0 1460~1800 220 WATER/AIR/MIX COOLING 11 6000×2500×2250
14   D-2.4/(16-20)-250 1.6~2.0 2450-3000 355 WATER/AIR/MIX COOLING 23 5000×3500×2500
15   D-2.4/(16-23)-210 1.6~2.3 2450-3450 355 WATER/AIR/MIX COOLING 23 5000×3500×2500
16   V-1.8/(18-23)-210 1.8~2.3 2000-2590 280 WATER/AIR/MIX COOLING 12 6500×2525×2200
17   D-1.45/(20-35)-250 2.0~3.5 1830-3100 280 WATER/AIR/MIX COOLING 23 5000×3500×2500
18   V-0.8/(19~35)-250 1.9~3.5 960~1720 160 WATER/AIR/MIX COOLING 13 6500×2525×2200
19   VF-1/(25~40)-250 2.5~4.0 1560~2700 220 AIR COOLING 13.5 4250×2525×2100
20   D-1.45/(40~60)-250 4.0~6.0 3600~5300 315 WATER/AIR/MIX COOLING 23 5000×3500×2100
21   D-1.3/(50-70)-250 5.0~7.0 3970~5530 315 WATER/AIR/MIX COOLING 23 5000×3500×2100
22   D-1.3/(60-70)-250 6.0~7.0 4758~5530 315 WATER/AIR/MIX COOLING 23 5000×3500×2100
23   D-1.2/(40-80)-250 4.0~8.0 4758~5530 315 WATER/AIR/MIX COOLING 23 5000×3500×2100
24   D-3.5/(7-10)-250 0.7~1 1680~2240 550 AIR COOLING 28 6600×4300×2500

CNG SUBSTATION COMPRESSOR
CNG substations are built in places where no natural gas pipelines pass through.
The CNG trailer transfers the gas from the mother station to the station and unloads the gas through the gas unloading column.
Gas machines refill cars.
Equipment composition: gas unloading column, sub-station compressor, sequence control panel, storage
Gas cylinder sets, gas dispensers, gas alarm devices, CNG trailers and other equipment.
Covered area: about 1000~1500m²
Way of working:
After natural balance, the direct intake air is compressed and supercharged, and the average working capacity is
More than 1000 square meters
Compressor exhaust volume changes range as trailer pressure drops:
1800-400Nm²/h

NO. TYPE Intake pressure
MPa
CAPACITY
Nm3/h
MOTOR
KW
COOLING  WEIGHT(TONS) SIZE
mm
1 VF-0.32/(30~200)-250 3~20 1500 75 AIR 5.5 5538×2134×1680
2 VFD-0.32/(30~200)-250 3~20 1500 75 AIR 9.65 5538×2438×2438
3 DFD-0.32/(30-200)-250 3~20 1500 75 AIR 8.5 4400×2610×2591
4 VFD-0.32/(20~200)-250 2~20 1500 75 AIR 9.65 5538×2438×2438
5 VF-0.26/(30-200)-250 3~20 1000 55 AIR 5.5 5538×2350×2000
6 VFD-0.26/(30-200)-250 3~20 1000 55 AIR 9.5 5538×2350×2438
7 ZFD-0.1/(30~200)-250 3~20 650 37 AIR 8.5 7000×2700×2700
8 ZFD-0.24/(30-200)-250 3~20 1400 37×2 AIR 8.5 7000×2700×2700
9 KR-1500/(20-200)-250 2~20 1500 30×2 AIR 10 5500×2500×2950
10 KR-2000/(20-200)-250 2~20 2000 37×2 AIR 10 5500×2500×2950
11 DFD-3[0.28]/(2-4)[25-200]-250 0.2~0.4

2.5~20

540-900
(STANARD STATION AND SUBSTATION)
1300
160

75

AIR 12.5 4050×3450×2100

Detailed Photos

 

After Sales Service

In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
 

Training plan

Technical training is divided into 2 parts: company training and on-site training.
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
 

Packaging & Shipping

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Month
Warranty: 12 Month
Lubrication Style: Lubricated

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China Professional Air-Cooled 25MPa CH4 Methane Piston Natural Gas Booster Compressor for CNG Standard Station   air compressor CHINAMFG freightChina Professional Air-Cooled 25MPa CH4 Methane Piston Natural Gas Booster Compressor for CNG Standard Station   air compressor CHINAMFG freight
editor by CX 2024-04-15

China Hot selling Low Noise Industrial Oil-Free Ammonia Methane Air Compressor Piston Reciprocating Compressor with high quality

Product Description

HangZhou CHINAMFG Gas Equipment Co.,Ltd, exporting diaphragm compressor, piston compressor, oxygen generator, gas cylinder and nitrogen generators with good quality and low price.

Piston compressor is a type of compressor that relies on the reciprocating motion of a piston to pressurize and deliver gas. Mainly by the working chamber, transmission components, body and auxiliary components. The working chamber is used to compress the gas directly, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston in turn for the opposite change, volume decreases on 1 side of the gas due to increased pressure through the valve discharge, volume increases on the side due to decreased pressure through the valve gas intake, transmission components to achieve reciprocating motion.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 18 Months
Warranty: 18 Months
Lubrication Style: Lubricated
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China Hot selling Low Noise Industrial Oil-Free Ammonia Methane Air Compressor Piston Reciprocating Compressor   with high qualityChina Hot selling Low Noise Industrial Oil-Free Ammonia Methane Air Compressor Piston Reciprocating Compressor   with high quality
editor by CX 2024-03-06