Tag Archives: air compressor engine

China high quality Diesel Engine Driven Screw Air Compressor supplier

Product Description

Product Description

This series of screw air compressors adopts a new 2 -stage compression engine. Compared with the traditional single -stage compression model, the efficiency is increased by more than 15%. The exhaust capacity can achieve cross -power segment coverage. It uses electric -driven, and has more environmentally friendly energy -saving advantages.

Item Portable air compressor-Option A
1 Model LUY050-7
2 volume flow m3/min 5.18 (185CFM)
3 Working pressure bar 7
4 Acoustic sound level 70+3
  Fuel tank L 67
5 Diesel engine Kubota
6 Model V 1505 T
7 Engine kw   33
8 Dimension Length mm 1848
9 Dimension Width mm 1040
10 Dimension Heigth mm 1154
11 Weight kg 650

Features

  1. High -energy -saving type: This series uses a new dual -level high -efficiency host to achieve higher exhaust volume with the same power motor to achieve truly efficient energy saving.
  2. Comprehensive monitoring: The customized version module realizes the comprehensive monitoring of the equipment, and understands the operating status of the aircraft in real time.
  3. Customized: The electrical system can customize the soft startup version to achieve smooth startup equipment to avoid the impact on the power grid. For more exhaust volume and exhaust pressure, it can be customized according to working conditions.

 

Detailed Photos

Other related products

Diameter in mm NO. Air Holes Gauge PDC Buttons Front PDC Buttons Approx. weight Shank style
85 2 6*φ13  4*φ12 5.0 kgs COP34/COP32/DHD3.5
/BR3/Mach303
90 2 6*φ14  4*φ12 5.8 kgs
95 2 6*φ14 5*φ12 5.9 kgs
100 2 6*φ14 6*φ12 6.1 kgs
105 2 8*φ13 6*φ12 6.3 kgs
105 2 6*φ14 5*φ13 8.6 kgs COP44/DHD340/Mach44
/M40/SD4/XL4/QL40
110 2 7*φ14 6*φ13 8.8 kgs
115 2 7*φ14 7*φ13 9.0 kgs
120 2 8*φ14 7*φ13 9.5 kgs
127 2 8*φ14 7*φ14 9.9 kgs
133 2 7*φ16 7*φ14 15.0 kgs COP54/DHD350/Mach50
/M50/SD5/QL50
140 2 7*φ19 7*φ14 16.5 kgs
146 2 8*φ19 7*φ14 17.0 kgs
152 2 8*φ19 8*φ14 17.8 kgs
165 2 8*φ19 8*φ16 18.5 kgs
152 2 8*φ19 8*φ16 23.3kgs COP64/COP62/DHD360
/M60/SD6/XL6/QL60/TD150
165 2 8*φ19 8*φ16 25.2 kgs
171 2 8*φ19 10*φ16 25.8 kgs
190 2 10*φ19 12*φ16 28.5 kgs
203 2 10*φ19 14*φ16 29.5 kgs
203 2 10*φ19 14*φ16 48.1 kgs DHD380/COP84/SD8
/QL80/TK18
216 2 10*φ19 14*φ16 52.0 kgs
241 2 12*φ19 18*φ16 58.7kgs
254 2 12*φ19 21*φ16 60.4 kgs
292 2 12*φ19 21*φ16 80.1 kgs

Company Profile

HangZhou FIRIP Mining&Machinery Co., Ltd is specializing a manufacture of drill tools for 23 years in China. It mainly studies and manufactures the low&high pressure down-the-hole impactors, various down-the-hole drills, drill pipes and drilling tools. The products are widely used in earthwork, mining, water well engineering and construction. Geothermal drilling, etc.

Domestic brands in China are mainly Xihu (West Lake) Dis.g. We have about 5, 000 square kilometers of standard plant, complete equipment, advanced technology, reliable and stable quality which has won the praise of most of the domestic and foreign markets. In recent years, with the continues growth of the company’s sales, target market gradually exported to all over the world, Nowadays, our products are exported to more than 20 countries and regions in Russia, Central Asia, Southeast Asia, the Middle East, Africa and South America. We always continuously improved the industry standards for rock drilling and drilling tools. We are committed to establish a stable cooperative relationship with customers and suppliers from all over the world, mutual benefit and common development.

Packaging & Shipping

Our Advantages

1. Our products can match over 95% against the original products.
2. High quality raw material, with premium hardened procedures for long life.
3. Full production chain to secure stable and prompt production leadtime.
4. Experienced senior technicians and long year experienced workers and engineers.
5. Customized acceptable and quick and efficient service.
6. Price are competitive against the famous brands and best quality against the small factory.
7. Owing to high quality, professional serivce and competitive price, we have gotton good reputation from our customer all over the world, such as France, Spain, Italy, South Africa, Australia, Iran, Malaysia, etc.

 

FAQ

1. Where is your company located?

We are located in HangZhou City, ZheJiang Province, about 200 kilometers away from HangZhou International Port.

2. Why choose Firip drill bits?

1) We have more than 20 years of experience in researching, developing, manufacturing and supplying high quality rock drilling tools to all over the world.
2) We have super high quality and cheap price.
3) Excellent service.

3.Which port do you ship from?
We usually ship containers from HangZhou Port. Or customers can specify any port in mainland China

4.What is your minimum order quantity?
Our MOQ is 1 piece or 1 set, the price may depend on the order quantity.

5.How about the delivery time?
It usually takes about 15 days.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Video Technical Support, Online Support, Spare PAR
Warranty: 1 Year
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China high quality Diesel Engine Driven Screw Air Compressor   supplier China high quality Diesel Engine Driven Screw Air Compressor   supplier
editor by CX 2024-05-17

China Good quality CHINAMFG CHINAMFG A7 Truck Spare Parts D12 Engine Vg1246130008 Wp10 Wp12 Engine 612600131107 612600130925 Air Compressor Assembly for Sale air compressor price

Product Description

Product Description

Main Engine Parts:Main Bearing Upper,Spraying Nozzle Assembly ,Crankshaft Front Gasket,Crankshaft Assembly,Piston Rings,Piston,Connecting Rod Bearing Upper,Connecting Rod Bearing Lower,Cylinder Head Gasket,Cylinder Head,Cylinder Head Gasket,Rocker Cover Assembly Lower ,Rocker Cover Assembly Lower Gasket,Reinforced Seal ,Rocker Cover Assembly Upper Seals,Valve Spring,Intake Valve Rocker Arm Assembly,Outtake Valve Rocker Arm Assembly,Valve Setting Screw ,Valve Setting Screw.

Part Number

Part Name

VG154571571

Main Bearing Upper

VG156

Crankshaft Assembly

VG157130006

Piston Rings

VG

Piston

VG

Connecting Rod Bearing Upper

VG

Connecting Rod Bearing Lower

VG1540040015A

Cylinder Head Gasket

AZ10965711

Cylinder Head

VG

Cylinder Head Gasket

VG15714571

Rocker Cover Assembly Lower

VG157140571

Rocker Cover Assembly Lower Gasket

VG1540040571A

Reinforced Seal

VG157140018

Rocker Cover Assembly Upper Seals

VG

Valve Spring

VG

Intake Valve Rocker Arm Assembly

VG157150006

Outtake Valve Rocker Arm Assembly

VG

Valve Setting Screw

VG

Valve Setting Screw

Sincere to customer and in good faith of quality is our forever followed motto. It’s the basement to be a human and on business. We take all responsibility for our products and service sincerely.

FE

 

ED

 

 

Company brief introduction:

We are established in 2571. The company is located in HangZhou City, ZheJiang Province, where CHINAMFG is located.Sincere to the customer and in good faith of quality is Deruna Heavy Truck Parts forever followed motto. It’s the basement to be a human and do business. We take all responsibility for our products and service sincerely.

Main product:

Our company specializing in the manufacturing and wholesale of China National Heavy Duty Truck, ZheJiang Heavy Duty Truck, Beiben truck, CHINAMFG truck and its related accessories. We mainly engage in various accessories products such as truck parts, cylinder blocks, crankshafts, diesel engines.
1.Power parts, including engines and peripheral parts [such as starters, generators, superchargers, various filter elements, etc.
2. Driving Part [also called transmission part], including clutch, gearbox, transmission shaft, axle, etc.;
3. Suspension part, including front and rear steel plates and fasteners, balance shaft, thrust rod, etc.
4. Steering part, including steering gear and Horizontal pull rods, etc.
5. Electrical appliances and valve parts, including various types of electrical switches, wiring harnesses, bulbs, and various braking components (valves).
6. Control and cargo parts, namely cab and cargo compartment.
7. Frame [that is, the beam] and so on.

Overseas market at present:

Our sales have averaged over 10 years of experience in exporting, and are proficient in all processes of business operation which can efficiently fulfill customer needs.

We currently export to 37 countries, and the client partners from Russia, New Zea-

land, Fiji, Papua New Guinea, Malaysia, Zambia, South Sudan, United Arab Emirates, Zimbabwe, Colombia and so on. We can also help you to supply registration docu-

ments of the importing in different countries. Welcome new and regular customers to contact us to establish future business relationships and achieve common success!

Q: What if I can not provide part number for reference?A: If no part number, we can judge and quote the requested parts by engine name-plate or photos;
It would be great if you could provide us with the chassis number(VIN) so that we can provide a more comprehensive analysis and accurate quote feedback based on your truck model.

Q: Can we buy 1 pcs of truck parts for quality testing?A: Yes, we are glad to send 1pcs item for quality testing if we have the truck parts of you need in stock.

Q: Do you test all your goods before delivery?A: Yes, we have 100% test before delivery.

Q: How do you make our business long-term and good relationship?A: We keep good quality and competitive price to ensure our customers benefit;
We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

Q: How long is the production time of the goods?A: We have sufficient stock of regular specifications for immediate delivery; Non-conventional specifications generally require stocking for about 7-10 days; Large quantities order need to be in stock for about 15-20 days.

Q: What is the packing?A: Neutral packing of paper carton or wooden case. Or we customize the packaging according to your requirements

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001
Standard Component: Standard Component
Technics: Press
Material: Standard
Type: Engine
Installation Location: Engine
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for cleaning and blowing dust?

Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:

1. Cleaning Machinery and Equipment:

Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.

2. Dusting Surfaces:

Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.

3. Cleaning HVAC Systems:

Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.

4. Blowing Dust in Workshops:

In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.

5. Cleaning Electronics and Computer Equipment:

Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.

6. Industrial Cleaning Applications:

Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.

When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.

Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Good quality CHINAMFG CHINAMFG A7 Truck Spare Parts D12 Engine Vg1246130008 Wp10 Wp12 Engine 612600131107 612600130925 Air Compressor Assembly for Sale   air compressor priceChina Good quality CHINAMFG CHINAMFG A7 Truck Spare Parts D12 Engine Vg1246130008 Wp10 Wp12 Engine 612600131107 612600130925 Air Compressor Assembly for Sale   air compressor price
editor by CX 2024-05-16

China Custom Hino 500 Truck Using Engine Air Brake Compressor 29100-2622 air compressor CHINAMFG freight

Product Description

 

Product Description

Product Name Truck Air Brake Compressor
Part Number 29100-2622
Truck Model Hino 500
Engine Model P11C
Cylinder Bore 70MM
Brand HCKSFS

Detailed Photos

 

 

Our Advantages

1. Quality air brake compressor has long-lasting performance and lower failure rates.
2. 100% genuine compressor outlooking and quality.
3. Compressor can last for 3+ years without any repairing. 
4. MOQ=1PC
 

Related Products

 

Company Profile

HangZhou CKS Auto Parts Co., Ltd. is found in 1989 at HangZhou, ZheJiang , China. With over 30 yerars professional experience in the truck parts business, CKS focuses on the manufacturing and exporting the quality truck spare parts for Hino CHINAMFG CHINAMFG and CHINAMFG UD trucks. 

 

CKS Auto Parts is major in manufacturing the truck air brake system parts like the air brake compressor assys, compressor repair kits, brake master cylinders, brake boosters, relay valves, quick release valves, etc. CKS is offering hundreds of different models truck air brake parts for our customers. 

 

With over 10 years of experience in exporting business, CKS has served over 1000 satified customers from 15 different coutries. Our customers are coming from the Southeast Asia, Middle East, Russia, Africa, South America. 

 

With wide range amount of stock and model of parts, we do promise our customers that we can do MOQ=1PC if the parts is in stock. And customer satifaction is always our first goal. 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 6 Months
Type: Engine
Certification: ISO9001
Brake System Parts: Brake
Color: Black
Samples:
US$ 350/Piece
1 Piece(Min.Order)

|
Request Sample

air compressor

Can air compressors be used for cleaning and blowing dust?

Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:

1. Cleaning Machinery and Equipment:

Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.

2. Dusting Surfaces:

Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.

3. Cleaning HVAC Systems:

Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.

4. Blowing Dust in Workshops:

In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.

5. Cleaning Electronics and Computer Equipment:

Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.

6. Industrial Cleaning Applications:

Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.

When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.

Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China Custom Hino 500 Truck Using Engine Air Brake Compressor 29100-2622   air compressor CHINAMFG freightChina Custom Hino 500 Truck Using Engine Air Brake Compressor 29100-2622   air compressor CHINAMFG freight
editor by CX 2024-05-15

China Best Sales in Stock Nt855 Diesel Engine Parts Air Compressor 3018534 for CHINAMFG Engine manufacturer

Product Description

Product Description

in Stock NT855 Diesel Engine Parts Air Compressor 3018534

Engine Type K19/K38/K50/QSK19/QSK38/QSM11/NT855
Parts No. 3018534
Part Name Air Compressor
Packing Neutral Package or As Customized Requirement
Delivery Time 3-7 Days
Condition 100% New
MOQ 1 Piece
Warranty 6 Months
Shipment By Express(DHL/Fedex/UPS),By sea,By air
Payment T/T , D/P , Money Gram , L/C , Western Union 

Related Products

Main Engine Model
KTA19 KTAA19 KTTA19 QSk19 QSKTAA19
NT855 NTA855 NTAA855 KT38 KTA38
KT50 KTA50 KTTA50 M11 MTA11
MTAA11 4BT 6BT 6CT ISF

Products Include
Injector Cylinder Head Crankshaft
Camshafts Valve Train Parts Connecting Rod
Cylinder Liners Piston Piston Ring
Bearings and Bush Fuel Pump Oil Pump
Water Pump Air Compressors Turbocharger
Flywheels Gasket Bolts
Starter Alternator Vibration Dampers

Packaging & Shipping

Company Profile

ZheJiang Jielot trading Co., Ltd. was established in March 2019, located in Xihu (West Lake) Dis., ZheJiang , China, close to ZheJiang CHINAMFG Engine Factory-CCEC.

We can supply CUMMINS engines and generator sets for mining, Marine and land use. Various series of parts can also be provided.main product series:CCEC ,DCEC XCEC : QSB5.9, QSB6.7, KTA19, KTA38, KTA50, NTA855, M11, QSM11, ISM11, QSX15, QSL9, 6BT5.9, 6CT8.3 ,4BT , Fleetguard filter ,HOLSET turbocharger,Air compressor and so on.


We have a strategic cooperative relationship with the largest CHINAMFG distributor in China, and we have a coexisting relationship with the largest OEM factory. We can provide genuine  Cummins parts or high-quality parts,Aftermarket quality parts, giving you a dual choice, so that you can choose more suitable for your price and quality.

We have cooperated with Thailand, Singapore, Malaysia, Indonesia, Dubai, Russia, Morocco, Germany and many other countries, and our products have been unanimously recognized. we have a complete set of procedures, in the quotation, procurement, delivery, transportation of mature solutions, to solve your worries.

Certifications

Exhibition & Customer

Our Advantages

1. We have more than 3 years of experience in CHINAMFG diesel engine parts.

2. We cooperate with many certificated OEM factories of CHINAMFG who have advanced equipment and technology.

3. High Quality + Reasonable Price + Quick Response + Technical Support is what we are trying to offer you the best cooperation experience.

FAQ

Q1:What is your terms of payment?
A1:T/T 30% as deposit,and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q2:How about your delivery time?
A2:Generally, it will take 7 days for air order and 20 to 30 days for sea order after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q3:Do you have MOQ?
A3:For general parts,we don’t have MOQ,1 piece can be sold,but for some parts like bearing,piston we may have MOQ like 6pcs,12pcs,but we will inform if there is any MOQ for special parts.

Q4:How to contact you?
A4:You can send inquiry to us directly or you can contact us by email phone call,WhatsApp,WeChat,Facebook and Skype. We will try to reply you as soon as possible.

Q5:How long is the production cycle (lead time) ?
A5:For engine parts, we usually have enough stock; For engines, usually around 10-20 days; For stock engine, usually 1 week.

Q6:How do you make our business long-term and keep good relationship?
A6:1. We keep good quality and competitive price to ensure our customers benefit.
        2. We respect every customer as our friend and we sincerely do business and make friends with them,no matter.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001, CE
Standard Component: Standard Component
Technics: Press
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Best Sales in Stock Nt855 Diesel Engine Parts Air Compressor 3018534 for CHINAMFG Engine   manufacturer China Best Sales in Stock Nt855 Diesel Engine Parts Air Compressor 3018534 for CHINAMFG Engine   manufacturer
editor by CX 2024-05-07

China wholesaler Industrial Machine Diesel Engine Part 3018534 Compressor Air for CHINAMFG air compressor price

Product Description

Product Description

Industrial Machine Diesel Engine Part 3018534 Compressor Air For Cummins

Product Name Compressor Air
Part Number 3018534
Packing Original Packing
Application Construction machinery diesel engine part
After-Service Strict test before shipment/fast delivery

 

Our Service

ZheJiang CHINAMFG Science and Technology Co., Ltd. (Hongjun) is the chinese leading one-stop supplier of spare parts for heavy machinery, marine and heavy trucks! Based on its extensive network , CHINAMFG is able to provide the most satisfying one-stop service for its customers!

                                          CHINAMFG supply spare parts for

                                          1.Wheelloader,excavator,grader,roller,bulldozer 
                                          2.Truck crance
                                          3.Mining truck
                                          4.Concrete pump

                                         We can supply spare parts for all bellowing Cumming models:

                                              B Series:
                                              B3.3(Tier 4 Interim)         B3.3(Tier 2)                  B3.3(Tier 3)                     B3.9CS4   
                                              B3.9                                B4.5(Stage V)               B5.9(Tier 2)                     B5.9CS4              
                                              B6.2                                B6.7(Stage V)               B6.7CS4                         B7                     
                                              B Series (Tier 2)             4B3.3   
                                              C Series:
                                              C8.3(Tier 2)
                                              D Series:
                                              D4.5                                D6.7
                                              F Series:
                                              F2.5                                F3.8(Stage V)
                                              I Series:
                                              ISM11
                                              K Series:
                                              K19
                                              L Series:
                                              L8.9                                L9 (Stage V)                  L9 Plus                           L9.3    
                                              L9CS4
                                              M Series:
                                              M11                               M12                                 M14CS4                         M15        
                                              M15 Plus  
                                              N Series:
                                              N14 Plus                       NT
                                              Q Series:
                                              QSX11.9 (Tier 4 Interim)               QSX15 (Tier 4 Final/Sate IV)               QSX15 (Tier 4 Interim)                  
                                              QSG12 (Tier 4 Final/Stage IV)      QSLP (Tier 4 Final/Stage IV)               QSLP (Tier 4 Interim)
                                              QSB3.3 (Tier 4 Interim)                 QSB3.3 (Tier 3)                                    QSB6.7 (Tier 4 Final/Stage IV)     
                                              QSB4.5 (Tier 4 Final/Stage IV)     QSB6.7 (Tier 4 Interim)                        QSB4.5 (Tier 4 Interim)                 
                                              QSB4.5 ( Tier 3)                            QSB4.5                                                QSB5.9
                                              QSB6.7 (Tier 3)                             QSB6.7                                                QSB7  
                                              QSF3.8 (Tier 4 Final/State IV)      QSF2.8 (Tier 4 Final/Stage IV)             QSK19 (Tier 3)                              
                                              QSK (Tier 3)                                  QSL (Tier 3)                                         QSL (Tier 2)  
                                              QSL9 (Tier 4 Interim)                    QSL9.3   QSL9 (Tier 4 Final/Stage IV) QSC                                             
                                              QSC8.3  QSC (Tier 3)                   QST30 (Tier 2)                                     QSK23 (Tier 2)                             
                                              QSK19 (Tier 2)                              QSK(Tier 2)                                          QSM (Tier 2)                                          
                                              QSM (Tier 3)                                 QSM11                                                  QSNT                                         
                                              QSK19                                          QSX (Tier 2)
                                                      X Series: 
                                              X12 (2571)                 X12 (2571)                    X12 (Stage V)                X15 (Stage V) 
                                              P Series:
                                              Power Units-Stage V
 

Hot Selling Products

Our Company

Warehouse


Packing&Shipping

Certificate

Our Team


Customer Visiting

FAQ
Q:   How about the warranty?
A: 
 All goods have 1 year warranty.
Q:   What about the delivery time?
A:   
Normally in 1 week.

Q:   Other suppliers have a better price than yours?
A:   
To create the greatest benefit for clients is our belief, if you have a better price, please let we know.
       We will try our best to meet your price and support your business.
Q:   What about the shipment?
A:   
We can arrange shipment by DHL, FedEx, UPS, TNT, EMS with competitive price. Of course,
       customers can also use their own freight forwarders.
Q:   How about the terms of payment?
A:   
Generally through T/T, Paypal and Western Union also accept.
F

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Support
Warranty: 1 Year
Type: Compressor Air
Application: Excavator
Certification: CE, ISO9001: 2000
Condition: New
Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China wholesaler Industrial Machine Diesel Engine Part 3018534 Compressor Air for CHINAMFG   air compressor priceChina wholesaler Industrial Machine Diesel Engine Part 3018534 Compressor Air for CHINAMFG   air compressor price
editor by CX 2024-04-25

China wholesaler New 13 Bar 13m3/Min Similar CHINAMFG CHINAMFG Rand CHINAMFG Ols130 D-13 Engine Portable Screw Air Compressor with CE Certificate Air Compressor air compressor price

Product Description

Oaliss’s objective is to be “Your very own system provider”. To fulfill this objective, CHINAMFG pays great attention to customer’s real needs and concerns, then provides feasible solutions. CHINAMFG chooses the most reliable suppliers from the industry and tests its performance before installing on our equipment. Product quality is our paramount goal. In the meantime, we do our best to fill the gaps between price and energy efficiency. Our equipment will be reliable enough to use and the price low enough to purchase. Combined with these distinct features, our high quality and variable products have been accepted by customers from various industries. Oaliss-your very own system provider.

Oaliss-your very own system provider.

Specification

Item

Description

Type

Diesel portable screw air compressor

Warranty

1 Year

Applicable Industries

Hotels, Garment Shops, Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Farms, Restaurant, Home Use, Retail, Food Shop, Printing Shops, Construction works, Energy & Mining, Food & Beverage Shops, Other, Advertising Company

After Warranty Service

Spare parts

Local Service Location

Thailand, Vietnam, Pakistan, Russia, Sri Lanka

Showroom Location

Thailand, Vietnam, Pakistan, Russia, Sri Lanka

Video outgoing-inspection

Provided

Machinery Test Report

Provided

Marketing Type

New Product 2571

Place of CHINAMFG

China

Brand Name

   Oaliss

  

Oaliss’s portable diesel compressor is best suited for the construction industry. It has become the best friend for customers that need to take the tools to perform their work with them.

Developed in conjunction with energy efficiency, Oaliss’s portable compressor will stand the test of time as well as providing you with the ability that easy to move, easy to operate, and easy to service.

 

Reliable
Famous brand diesel engine, fitted with double air filters and heavy duty oil filter which could protect the compressor and improve reliability of the whole machine.

Energy efficiency
Smartly auto detect the running status, loading and unloading stage could be easily changed with actual working status, reduce the fuel consumption.

Power expert
Automatically detect the vessel pressure, then adjust the engine speed accordingly. The compressor could provide more volume during drilling operation.

Technical specifications 1

Com pressor   OLS30 D-7 OLS40 D-8 OLS50 D-8 OLS80 D-7 OLS100 D-8 OLS100 D-12
Working pressure bar (g) 7 8 8 7 8 12
Free air delivery (FAD) m3/min 2.5 3.5 5.2 8 10 10
Compression stages   One stage One stage One stage One stage One stage One stage
Approx. outlet temperature °C <120 <120 <120 <120 <120 <120
Air compressor outlets inches 2 x ¾” 2 x ¾” 3 x ¾” 1x¾”&1×1½” 1x¾”&1×1½” 1x¾”&1×1½”
Engine              
Brand   Xichai Xichai Xichai Xichai Xichai Xichai
Emissions regulation CHN            
Output at rated speed kW/hp 20.6/28 26.5/36 36/49 49/66.5 81/110 96/130
Displacement L 1.6 1.5 2.4 3.3 3.9 3.9
Fuel tank capacity L   90 100 120 120 120
Rated speed rpm 2200 3000 2200 2000 2200 2500
Dim ensions and weight              
Length mm 1860 2450 2450 2840 3380 3380
Width mm 980 1330 1330 1680 1855 1855
Height mm 1350 1500 1550 1885 2175 2175
Weight kg 500 1070 1310 1710 2100 2100

Technical specifications 2

Com pressor   OLS130 D-13 OLS110 D-17 OLS120 D-8 OLS130 -17 OLS130 D-18 OLS150 D-18
Working pressure bar (g) 13 17 8 17 18 18
Free air delivery (FAD) m3/min 13 11 12 13 13 15
Compression stages   One stage Two stages Two stages Two stages Two stages Two stages
Approx. outlet temperature °C <120 <120 <120 <120 <120 <120
Air compressor outlets inches 2×1/4 1x¾”&1×1½” 1x¾”&1×1½” 1x¾”&1×1½” 1x¾”&1×1½” 1x¾”&1×1½”
Engine              
Brand   Xichai Yuchai Cummins Cummins Yuchai Yuchai
Emissions regulation CHN            
Output at rated speed kW/hp 118/160 118/160 96/130 132/180 140/190 162/220
Displacement L 4.8 4.8 3.9 5.9 6.5 7.8
Fuel tank capacity L 180 180 180 180 320 270
Rated speed rpm 2000 2200 2500 2200 2200 2200
Dim ensions and weight              
Length mm 2500 3260 3380 3505 3500 3460
Width mm 2100 1950 1855 1950 2060 2040
Height mm 2200 2150 2175 2190 2200 2280
Weight kg 3200 2620 2570 2700 2700 2650

Technical specifications 3

Com pressor   OLS150 D-20 OLS160 D-8 OLS180 D-20 OLS185 D-20 OLS210 D-23 OLS230 D-25
Working pressure bar (g) 20 8 20 20 23 25
Free air delivery (FAD) m3/min 15 16 18 18.5 21 23
Compression stages   Two stages Two stages Two stages Two stages Two stages Two stages
Approx. outlet temperature °C <120 <120 <120 <120 <120 <120
Air compressor outlets inches 1x¾”&1×1½” 1x¾”&1×1½” 1×1″&1×2″ 1×1″&1×2″ 1×1″&1×2″ 1×1″&1×2″
Engine              
Brand   Cummins Cummins Yuchai Cummins Cummins Cummins
Emissions regulation CHN            
Output at rated speed kW/hp 160/215 110/150 191/260 194/260 242/325 264/360
Displacement L 8.3 5.9 8.3 8.3 8.9 8.9
Fuel tank capacity L 320 180 320 320 380 380
Rated speed rpm 2200 2200 2200 2200 2100 2100
Dim ensions and weight              
Length mm 3465 3580 3660 3660 3660 3660
Width mm 1800 2060 1900 1900 1980 1980
Height mm 2310 2190 2310 2310 2480 2480
Weight kg 4135 2700 4290 4290 5080 5200

Technical specifications 4

Com pressor   OLS240 D-8 OLS300 D-23 OLS350 D-25 OLS350 D-30 OLS470 D-13 OLS670 D-13
Working pressure bar (g) 8 23 25 30 13 13
Free air delivery (FAD) m3/min 24 30 35 35 47 67
Compression stages   Two stages Two stages Two stages Two stages Two stages Two stages
Approx. outlet temperature °C <120 <120 <120 <120 <120 <120
Air compressor outlets inches 1×1″&1×2″ 1×1″&1×2″ 1×1″&1×2″ 1×1″&1×2″ DN125 DN125
Engine              
Brand   Cummins XiChai Cummins Cummins Cummins Cummins
Emissions regulation CHN            
Output at rated speed kW/hp 160/215 310/420 410/550 410/550 410/550 563/755
Displacement L 8.3 11 13 13 13 19
Fuel tank capacity L 320 875 620 950 250 380
Rated speed rpm 2200 2000 1900 1900 1900 1900
Dim ensions and weight              
Length mm 3660 3675 3800 4250 3800 4400
Width mm 1980 1950 2100 2100 2200 2500
Height mm 2310 2500 2325 2900 2400 2560
Weight kg 4380 7000 8100 6500 8500 9500

 

Industrial equipment, printing service, pipelines, power plants, oil&gas, oil refinery, coating, painting,
plastics, steel industry, rubber, mechanical, blow molding, color sorter machine, shipyard, sandblasting, 
metallurgy, etc.

To provide the right equipment to you, please send us your detailed requirements.


1 Q: How about the quality of products?

   A: We are an authorized distributor of Atlas Copco. Don’t worry about the quality and service.

2 Q: How long is your delivery lead time?

   A: If there is stock, the lead time is about 3 working days after we get the payment if need to
       be produced, it depends.

3 Q: How about your overseas after-sale service?

   A: (1)Provide customers with installation and commissioning online instructions.

       (2)Worldwide agents and after service available.

4 Q: Can you accept OEM&ODM orders?

   A: Yes, we have a professional design team, OEM&ODM orders are highly welcomed.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Movable Type
Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China wholesaler New 13 Bar 13m3/Min Similar CHINAMFG CHINAMFG Rand CHINAMFG Ols130 D-13 Engine Portable Screw Air Compressor with CE Certificate Air Compressor   air compressor priceChina wholesaler New 13 Bar 13m3/Min Similar CHINAMFG CHINAMFG Rand CHINAMFG Ols130 D-13 Engine Portable Screw Air Compressor with CE Certificate Air Compressor   air compressor price
editor by CX 2024-04-16

China Professional Ec360b Ec210b Ec160b Ec140 Ec700b Ec460 Ec360b Ec240b Engine Parts Voe14778022 Engine Air Compressor for CHINAMFG Excavator Parts air compressor portable

Product Description

EC360B EC210B EC160B EC140 EC700B EC460 EC360B EC240B Engine Parts VOE14778571 Engine Air Compressor for CHINAMFG Excavator Parts

Product Information

Part Number VOE14778571 Engine Air Compressor
Description Diesel Engien Parts Starter Motor
CHRA NEW IN STOCK
Turbo Model  VOE14778571 
Application Tractor
Engine EC360B EC210B EC160B EC140 EC700B EC460 EC360B EC2
Fuel Diesel Engine Parts

 

Diesel engines brands and engines spare parts

Main parts Starter/ Alternator
Rebuilt kit: Cylinder liner/ Piston/ Piston pin/ Piston ring/ circlip/ water seal O-ring
Crankshaft/ thrust piece of crankshaft/ rock arm assembly
Connecting rod/ Main Bearing shell/ Connecting rod Bearing
Fuel injection pump/ Fuel injector/ Injector nozzle/ Plunger
Cylinder head/ Head gasket/ cylinder block
Intake valve/ exhaust valve
Oil pump/Water pump assy/ injection pump
Muffler& Filter/ Air filter/ Fuel filter/ Oil filter
Flywheel/ flywheel box/ oil sump/ oil sump gasket/ fan

More other Sarter Motor We can Porvide:

Models:              
TY290 TY295 TY2110 TY395 JD490 JD495 JD4100 JD4102
Y380 Y385 Y480 Y485 Y490 Y4100 Y4102 Y4105
KM385TE KM385BT KM390BT 4L22TE 4L22TC      
EV80 3M78 ZN385Q ZN390T ZN485Q ZN490T 4L68 4L88
A498BT A498BZG A490BPG C490BPG C490BT 490BPG 498BPG  
QC380 QC385 QC490 QC495        
YTR4105 YTR4108            
SL2100 SL2105 SL3100 SL3105ABT SL4105ABT      

More other Excavator Engine We can provide

BRAND EXCAVATORMODEL ENGINEMODEL BRAND EXCAVATORMODEL ENGINEMODEL
HIT-ACHI EX100 4BD1 SUM-ITOMO SH100 4BD1
EX120 4BD1T SH120 4BD1T
EX2003 6BD1T SH145 4D31T
EX270 H06CT SH200 6BD1
EX300 EP100 SH200A3 6BG1T
EX400 6RB1T SH240A5 4HK1
ZAX120 4BG1T SH300 D22T
ZAX200 6BG1T SH350 6D24
ZAX2003G 6WG1T SH350A5 6HK1
ZAX2306 6BG1T JC-B JS130LC 4JJ1
ZAX2403 4HK1 JS220LC 4HK1
ZAX3303 6HK1 JS290LC 6HK1
ZAX360LC3 6HK1X JS330LC 6HK1
ZAX4703 6WG1XYSA JS360LC 6HK1
HYU-NDAI R557 4TNV94L KO-BELCO SK55C 4TNV94L
R809S 4TNV98 SK758 4LE2X
R2159C B5.9C SK1308 D04FR
R2205 6BT5.9C SK135SR1 4BG1T
R225LC9S B5.9C SK135SR2 D04FR
R265LC9 QSB6.7 SK2006 6D34
R275LC9T C8.3C SK2006E 6D34
R3005 6CT8.3 SK2008 J05E
R305LC7 C8.3C SK2008SUPER J05E
R305LC9 QSB6.7 SK235SRLC 6D34
R335LC7 C8.3C SK310 6D22
R335LC9 QSC8.3 SK330LC6E 6D16
R385LC9 QSC8.3 SK3308 J08E
R485LC9 QSM11 SK350LC J08E
R505LC7 QSM11C SK4608 P11C
KOMATS-U PC1201 S4D95L/S4D105/6D95L VO-LVO EC55BLC 4TNV94
PC2006 S6D95L EC140B D4D
PC2007 S6D102 EC210B D6DD6E
PC2008 SAA6D107E1 EC240B D7DD7E
PC3006 SAA6D108E2 EC290BLC D7DD7E
PC3007 6D114 EC360B D10BD12D
PC3008 SAA6D114E3 EC460B D12D
PC4008 SAA6D125E5 EC480B D13F
PC6503 SA6D140 EC700B D16E

Apply More Available Models

ISUZ-U

 

3LD1 4LE1 4LE2 4JB1 4JG1
4BG1 4HK1 6BG1 6HK1 6BD1
6SD1 6WG1 6WF1    
Yan-mar
 
4D88E 4TNE84 4TNE88 4TNE94 4TNE98
4TNV88 4TNV94L 4TNV98 4TNV106  
Mit-subishi
 
4D34 4D24 6D16 6D24 6D34
K4M S3Q2 S4KT 6D40 S6K
HI-NO
 
J05E J08E P11C V21C V22C
V25C EF750 H06CT H07D  
CUMMIN-S
 
QSB6.7 QSM11-C QSM11 C8.3-C QSB6.7
B5.9-C B3.9-C      
VO-LVO
 
D6D D6E D7D D7E D9D
D9E D12D D12E D16D D16E
DO-OSAN DB58T D1146 D2366 DB33A DE08T
CA-T

 

3114 3116 3064T S6K S4K
C4 C6 C7 C-9 C11
C13        

 Applicable To Excavator Model Number

Kobuto KX71-2 KX71-3 KX61-2 KX71 KX61 KX91.3
Komats-u PC56-7 PC60-8 PC70-8 PC110-7 PC130-7 PC160-7 PC200-7 PC200-8 PC200LC-8 PC210-8 PC210LC-8
PC220-8 PC240LC-8 HB205-1 HB215LC-1
PC270-7 PC300-7 PC360-7 PC400-8 PC450-8 OTHERS
Kob-elco SK130-8 SK135-8 SK140-8 SK200-6 SK200-8 SK210-8 SK250-8 SK260LC-9 SK330-6 SK200-6E SK250-6E
SK230-6E SK330 SK350-6E SK350-8 SK55SR-5 SK55SRX SK60-C SK60-8 SK70SR-2 SK75-8 SK130 SK135SR-2 SK140LC SK140LC-8 SK210LC-8 SK250-8
SK260LC-8 SK270D SK330-8 SK350LC-8 SK380D SK460-8 SK480 SK480-8 SK495D SK850LC OTHERS
Vo-lvo EC13 EC25 EC55B EC60 EC80 EC135 EC140 EC160 EC170 EC200 EC210B EC210 EC240 EC220 EC240B
EC250 EC300 EC350 EC360B EC360 EC380 EC460
Hyu-ndai R130-7 R140-7 R150 R150-9 R200-7 R210-5 R210-7 R215-7 R215-9 R220-5 R225-7 R225-9 R225-9T
R265-9T R265-9 R290-7 R300-5 R305-7 R335 R335-7 R335-9 R360 R370 R375-7 R385 R455 R460 R465 R485 R505
Do-osan DH85 DH150W DH215-9 DH220-5 DH220-7 DH225-7 DH225-9 DH258-7 DH300-V DH360 DH300LC-7 DX260 DH370 DH420 DH55 DX60 DH60-7 DX75 DX80
DX120 DX150LC DH150LC-7 DH215-9 DH215-9E DH220LC-9E DH225LC-9 DX260LC DX300LC DH300LC-7 DX345LC DH370LC-9 DX380LC DX420LC
DH420LC-7 DX500LC DH500LC-7 DX700LC
Yan-mar B25 B25V B37V VIQ30 B22
SAN-Y SY65 SY75 SY135 SY215 SY215-8 SY205-8 SY215-8S SY205-9 SY215-9 SY235-8 SY245 SY305 SY285
SY335 SY365 SY375 SY385 SY465 SY700 SY485H
Hit-achi EX35 ZX30CLR EX30.2
Da-ewoo 130 150
Sum-itomo SH200 SH200-1 SH 200-2 SH200-Z3 SH200-A3 SH240-A5 SH350-3 SH350 SH360 SH365
Jac-ob JCB200 JCB210 JCB220 JCB240 JCB802.7
CA-SE CX210B CX240B CK25 CX350 CX365 CX360
XCM-G XCMG160D XCMG200DA XCMG250 XCMG260 XCMG370 XCMG470

Can Provide Excavator Parts

Crankshaft Cylinder Head Cylinder Liner Cylinder Block
Camshaft Injector Filter Fuel Pump
Water Pump Piston Turbocharger Connecting Rod
Gear Ring Engine Assembly Fly wheel Injection Valves
Bearing Bushes Full Gasket Set Intake Valve Exhaust Valve

About Us

HangZhou Xihu (West Lake) Dis.an Machine Equipment Co.,Ltd. is a professional supplier for hydraulic breaker parts and excavator parts and OEM hydraulic seals manufacturer. we specialize in this field over 12 years, with good quality and pretty competitive price! Our company supply parts for almost all brands hyd breakers. seal kits, diaphragm, piston, chisel, upper and lower bush, rod pinthrough bolts, side bolts, control valve, front head, cylinder, back head, accumulator, charger kit, gas bottle, shock absorber, ect.

Our Service
1,3 quality can be choose: Made in China,Original,Handok
2,Fast delivery time :within 24 hours
3,We will reply you for your inquiry in 24 hours
4,Guaranteed quality
5,after sending,we will track the products for you once every 2 days,until you get the products. When you got the goods,test them,and give me a feedback.If you have any questions about the problem,contact with us,we will offer the solve way for you.

FAQ

Q1. How many days for the delivery time ?
It is about 1-7 working days after the order confirmation.
 
Q2. What kind of payments you accept?
Now we accept T/T,L/C or Western Union,other terms also could be negotiated,Recommended Trade Assurance to guarantee buyer’s property.
 
Q3. Are you able to manufacturing products according to customer’s design?
Sure,we have made many special orders from oversea for 10 years since 2571. So we have enough ability to deal with any cases. OEM certificate is available to provided.
 
Q4. What’s your advantages in the machinery manufacturing industry?
Fast delivery time,High quality products,Best customer service,Adopting the latest production technology.
 
Q5. Which countries have you been exported recently?
Canada,Australia,Peru,Egypt,Brazil,Mexico,South Africa,etc.
 
Q6. Are you sure that your product will suit for our excavator?
We have different brand hydraulic breakers. Show me your model number,and we can give you best match products.
 
Q7. How about the packing of the goods?
Standard export package,wood cases,or as customers’ demands.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 3 Months
Type: Turbocharger
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China Professional Ec360b Ec210b Ec160b Ec140 Ec700b Ec460 Ec360b Ec240b Engine Parts Voe14778022 Engine Air Compressor for CHINAMFG Excavator Parts   air compressor portableChina Professional Ec360b Ec210b Ec160b Ec140 Ec700b Ec460 Ec360b Ec240b Engine Parts Voe14778022 Engine Air Compressor for CHINAMFG Excavator Parts   air compressor portable
editor by CX 2024-04-09

China factory High Quality Air Compressor 01173877 for CHINAMFG 914 Engine air compressor lowes

Product Description

Product Description
 

Parts Name Air Compressor
Parts Number 01173877
Engine Model 914
Origin ZheJiang , China
size High Quality  Standard Size
Warranty 6 Months
MOQ One Set
Packing Neutral ,genuine ,customized packing paper package,wodden packing
shipping DHL/FEDEX/UPS/TNT/ARAMEX, AIR & SEA
Delivery Time Within 15 workdays according to your order.
Payment T/T, Western Union, Alibaba online payment

Why Choose US?

Packaging & Shipping

Company Profile

Production Workshop

Main Products

 

Certifications

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Component: Standard Component
Technics: Casting
Material: Steel
Place of Origin: Beijing, China
Brand Name: Deutz
Model Number: 914
Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China factory High Quality Air Compressor 01173877 for CHINAMFG 914 Engine   air compressor lowesChina factory High Quality Air Compressor 01173877 for CHINAMFG 914 Engine   air compressor lowes
editor by CX 2024-04-03

China best 7bar 15kw 20HP Diesel Engine Portable Piston Mining Air Compressor Mobile for Jack Hammer supplier

Product Description

Product Description

 

Complete variety and serialization

The 0.5~0.7Mpa series reciprocating piston air compressors designed with modern concepts have brought together new scientific and technological achievements in miniature air compression at home and abroad.

Technology concentration, excellent overall machine performance 

The optimized design of the valve can effectively reduce the exhaust resistance and exhaust temperature, and increase the exhaust volume. Reasonably designed aluminum cylinder head and high heat dissipation fins realize rapid heat dissipation, effectively reduce exhaust temperature and reduce energy consumption. Adopt air intake or exhaust unloading device to effectively reduce energy consumption. Use the oil blower to blow the oil to form splash oil mist. Lubricate bushes and bearings for reliableoperation.

Close to the actual needs of users

A complete series of products, from small to large displacement, meet the demand of different types of pneumatic rock drills andother pneumatic machinery. The structure is diverse and suitable for different users. The goods are cheap and beautiful, and the investment cost is low.

Features:

1.Value plate and spring strip: made of special steel from Sweden and after special treatment; high efficient and reliable.

2.Piston ring: special design; integral casting; excellent flexibility; lowest lubricating oil consumption.

3.Cylinder: made of boron cast iron; wear resistant; special suitable for dust condition.

4.Cylinder cover: extrusion process adopted; streamlined external appearance; good heat emission performance.

5.Crankshaft: made from ductile cast iron; rare magnesium alloy after heat treatment and surface quenching;excellent performance.

6.Simple structure, light weight, easy to move.

 

Product Parameters

Model

W3108

W3118

W3128

W-1.8/5

W-2.85/5

W-3.0/5

W-3.5/5

Air delivery(m³/min)

2.0

3.0

3.5

1.8

2.85

3.0

3.5

Rated pressure(bar)

7

5

Rotation speed(r/min)

1150

1080

990

1180

1070

1070

1070

Cylinder Qty*Dia(mm)

3*108

3*118

3*128

3*100

3*115

3*120

3*125

Piston stroke(mm)

80

100

110

80

100

100

100

Driven method

Automatic clutch
 
Add: Building 5, No.5 Zhanghe Road, Hi-tech Industrial Development Zone, HangZhou
City, ZheJiang Province,China

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Warranty: 1year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Position: Horizontal
Structure Type: Open Type
Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China best 7bar 15kw 20HP Diesel Engine Portable Piston Mining Air Compressor Mobile for Jack Hammer   supplier China best 7bar 15kw 20HP Diesel Engine Portable Piston Mining Air Compressor Mobile for Jack Hammer   supplier
editor by CX 2024-03-27

China manufacturer China Factory Heavy Duty 5-43m3 7-35bar Tires/Wheels Mounted Portable/Movable Cummin/Wechai/Yuchai Diesel Engine Screw Air Compressor for Drilling Rig, Minning with Hot selling

Product Description

china factory heavy duty 5-43m3 7-35Bar Tires/wheels mounted Portable/Movable Cummin/Wechai/Yuchai Diesel Engine Screw Air Compressor for Drilling Rig,Minning

1. Photo for GREAT diesel driven portable screw air compressor :

2. Detailed :

GREAT  brand CHINAMFG adopts imported head, the gas control system ensures the stability of the machine, the diesel mobile CHINAMFG introduced by the company adopts the power, so that the fuel consumption rate is very low, suitable for severe field use environment; Low noise, low vibration technology; Multiple automatic alarm and stop protection devices; Easy and quick maintenance. Products are widely used in railway, hydropower, infrastructure, machinery, mining and other industries.

Machine features:

1. More than 20 years of precipitation design technology, outstanding system configuration, achieve combination;
2. The engine adopts CHINAMFG and CHINAMFG brand, which is fuel-efficient, durable, full reserve power, easy to maintain, low cost and guaranteed after sales;
3. High temperature resistant environment design, stable gas supply, no pulse, no need to add buffer tank;
4. Equipped with automatic stop and alarm system, easy to operate and ensure the operation of equipment;
5. The front, rear, left and right open and closed box design provides the convenience of maintenance with spacious space.
6. Unique oil and gas separation structure and high strength oil content, fully ensure the compressor in high pressure operation, low fuel consumption, high efficiency. It is the choice of gas source for high-pressure subsurface drilling machine, well drilling machine, coalbed methane exploitation, geothermal well exploitation and other industries.

3. Advantage for GREAT diesel driven portable screw air compressor: 

1). Heavy duty CHINAMFG or CHINAMFG diesel engine for extended operation. Powerful engine helps to improve the reliability and reduce the fuel consumption, up to standards of Euro II and E-mark.
2). Specially use in mining, hydropower, oil and gas exploitation, borehole, shipyard, construction, chemical industry.
3). With 0-1 square meters. Now exporting to more than 120 countries. Has established a huge sales and service network at home and abroad.

 

why you choose us ? 1. Over 60 years China professsinal manufacture for air compressor ,An ISO9, China.
Website: http://greataircompressor
Sales Manager: Celia Meng
   

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Techinal Support
Warranty: 12-24 Month
Lubrication Style: Oil-less
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China manufacturer China Factory Heavy Duty 5-43m3 7-35bar Tires/Wheels Mounted Portable/Movable Cummin/Wechai/Yuchai Diesel Engine Screw Air Compressor for Drilling Rig, Minning   with Hot sellingChina manufacturer China Factory Heavy Duty 5-43m3 7-35bar Tires/Wheels Mounted Portable/Movable Cummin/Wechai/Yuchai Diesel Engine Screw Air Compressor for Drilling Rig, Minning   with Hot selling
editor by CX 2024-03-26